TY - JOUR
T1 - Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles
AU - Gen, Masao
AU - Chan, Chak K.
PY - 2017/11/24
Y1 - 2017/11/24
N2 - We present electrospray surface-enhanced Raman spectroscopy (ES-SERS) as a new approach to measuring the surface chemical compositions of atmospherically relevant particles. The surface-sensitive SERS is realized by electrospraying Ag nanoparticle aerosols over analyte particles. Spectral features at v(SO42-), v(C-H) and v(O-H) modes were observed from the normal Raman and SERS measurements of laboratory-generated supermicron particles of ammonium sulfate (AS), AS mixed with succinic acid (AS/SA) and AS mixed with sucrose (AS/sucrose). SERS measurements showed strong interaction (or chemisorption) between Ag nanoparticles and surface aqueous sulfate [SO42-] with [SO42-]AS/sucrose > [SO42-]AS/SA > [SO42-]AS. Enhanced spectra of the solid AS and AS/SA particles revealed the formation of surface-adsorbed water on their surfaces at 60% relative humidity. These observations of surface aqueous sulfate and adsorbed water demonstrate a possible role of surface-adsorbed water in facilitating the dissolution of sulfate from the bulk phase into its water layer(s). Submicron ambient aerosol particles collected in Hong Kong exhibited non-enhanced features of black carbon and enhanced features of sulfate and organic matter (carbonyl group), indicating an enrichment of sulfate and organic matter on the particle surface.
AB - We present electrospray surface-enhanced Raman spectroscopy (ES-SERS) as a new approach to measuring the surface chemical compositions of atmospherically relevant particles. The surface-sensitive SERS is realized by electrospraying Ag nanoparticle aerosols over analyte particles. Spectral features at v(SO42-), v(C-H) and v(O-H) modes were observed from the normal Raman and SERS measurements of laboratory-generated supermicron particles of ammonium sulfate (AS), AS mixed with succinic acid (AS/SA) and AS mixed with sucrose (AS/sucrose). SERS measurements showed strong interaction (or chemisorption) between Ag nanoparticles and surface aqueous sulfate [SO42-] with [SO42-]AS/sucrose > [SO42-]AS/SA > [SO42-]AS. Enhanced spectra of the solid AS and AS/SA particles revealed the formation of surface-adsorbed water on their surfaces at 60% relative humidity. These observations of surface aqueous sulfate and adsorbed water demonstrate a possible role of surface-adsorbed water in facilitating the dissolution of sulfate from the bulk phase into its water layer(s). Submicron ambient aerosol particles collected in Hong Kong exhibited non-enhanced features of black carbon and enhanced features of sulfate and organic matter (carbonyl group), indicating an enrichment of sulfate and organic matter on the particle surface.
UR - http://www.scopus.com/inward/record.url?scp=85035006501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85035006501&partnerID=8YFLogxK
U2 - 10.5194/acp-17-14025-2017
DO - 10.5194/acp-17-14025-2017
M3 - Article
AN - SCOPUS:85035006501
SN - 1680-7316
VL - 17
SP - 14025
EP - 14037
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 22
ER -