TY - GEN
T1 - Elucidation of the high cycle fatigue damage mechanism of modified 9CR-1MO steel at elevated temperature
AU - Murakoshi, Takuya
AU - Ochi, Motoyuki
AU - Suzuki, Ken
AU - Miura, Hideo
N1 - Publisher Copyright:
Copyright © 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - Modified 9Cr-1Mo steel is one of the heat-resistant steels developed for steam generator in a FBR (Fast Breeder Reactor). When it is used in a FBR, the lifetime of the steel under HCF (High Cycle Fatigue) and V-HCF (Very-High Cycle Fatigue) caused by flow-induced vibration has to be considered for assuring its long-Term reliability up to 1011 cycles. Since previous studies showed that the fatigue limit did not appear up to 108 cycles, it is necessary to investigate the fatigue strength of this alloy in cycles higher than 108 cycles. In this study, in order to clarify high cycle fatigue strength and fracture mechanism of the modified 9Cr-1Mo steel, the change of the lath martensitic strengthening structure was observed in detail on the surface of specimens fractured by rotary bending fatigue tests by using EBSD (Electron Back-Scatter Diffraction) method. The Kernel Average Misorientation (KAM) value obtained from the EBSD analysis was used for the quantitative evaluation of the change of the lath martensitic texture. It was found that the average KAM values clearly decreased on the surface areas of the fractured specimens after the application of 107-108 cycles of fatigue loading at temperatures higher than 550°C. This result indicates that degradation of the lath martensitic texture occurred around the surface of specimens tested at the temperature higher than 550°C. In order to quantitatively evaluate the decrease of its strength, a hardness test was performed at room temperature by using a nanoindentation method. It was confirmed that the surface hardness of specimens decreased drastically in the specimens fractured at temperatures higher than 550°C. From these results, it was concluded that the effective 0.2%-proof stress decreased during the fatigue tests by the degradation of the lath martensitic texture caused by the fatigue loading at elevated temperatures. Further analyses are indispensable for explicating the damage mechanism more in detail.
AB - Modified 9Cr-1Mo steel is one of the heat-resistant steels developed for steam generator in a FBR (Fast Breeder Reactor). When it is used in a FBR, the lifetime of the steel under HCF (High Cycle Fatigue) and V-HCF (Very-High Cycle Fatigue) caused by flow-induced vibration has to be considered for assuring its long-Term reliability up to 1011 cycles. Since previous studies showed that the fatigue limit did not appear up to 108 cycles, it is necessary to investigate the fatigue strength of this alloy in cycles higher than 108 cycles. In this study, in order to clarify high cycle fatigue strength and fracture mechanism of the modified 9Cr-1Mo steel, the change of the lath martensitic strengthening structure was observed in detail on the surface of specimens fractured by rotary bending fatigue tests by using EBSD (Electron Back-Scatter Diffraction) method. The Kernel Average Misorientation (KAM) value obtained from the EBSD analysis was used for the quantitative evaluation of the change of the lath martensitic texture. It was found that the average KAM values clearly decreased on the surface areas of the fractured specimens after the application of 107-108 cycles of fatigue loading at temperatures higher than 550°C. This result indicates that degradation of the lath martensitic texture occurred around the surface of specimens tested at the temperature higher than 550°C. In order to quantitatively evaluate the decrease of its strength, a hardness test was performed at room temperature by using a nanoindentation method. It was confirmed that the surface hardness of specimens decreased drastically in the specimens fractured at temperatures higher than 550°C. From these results, it was concluded that the effective 0.2%-proof stress decreased during the fatigue tests by the degradation of the lath martensitic texture caused by the fatigue loading at elevated temperatures. Further analyses are indispensable for explicating the damage mechanism more in detail.
KW - Electron back-scatter diffraction
KW - High cycle fatigue
KW - Kernel average misorientation
KW - Micro texture
KW - Mod. 9Cr-1Mo steel
UR - http://www.scopus.com/inward/record.url?scp=84981267544&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84981267544&partnerID=8YFLogxK
U2 - 10.1115/IMECE2015-53341
DO - 10.1115/IMECE2015-53341
M3 - Conference contribution
AN - SCOPUS:84981267544
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Mechanics of Solids, Structures and Fluids
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015
Y2 - 13 November 2015 through 19 November 2015
ER -