Abstract
We report on emergence of two-dimensional conduction and ferromagnetism at the interface of MnTe thin films and InP substrates. The MnTe/InP heterostructures grown by molecular-beam epitaxy show thickness-independent sheet conductivity above a critical thickness of about 20 nm, indicating the formation of a conducting layer at the interface. Furthermore, the ferromagnetic behavior is confirmed by both magnetization and anomalous Hall effect measurements below a critical temperature of 270 K. The critical temperature is also independent of the thickness. By the investigation of the atomic structure with transmission electron microscopy, we observe a structural anomaly near the interface which consists of an antiprism-type Mn network unlike a prism-type Mn network of conventional MnTe. The band structure calculation shows that the antiprism-type MnTe can host metallic conduction and ferromagnetism, which is consistent with the present experimental results. The interface engineering based on the chalcogenide compound will develop a new arena for designing the emergent low dimensional conduction and magnetism.
Original language | English |
---|---|
Article number | 181602 |
Journal | Applied Physics Letters |
Volume | 113 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2018 Oct 29 |