Endothelium-derived nitric oxide does not modulate metabolic coronary vasodilation induced by tachycardia in dogs

Yousuke Katsuda, Kensuke Egashira, Yutaka Akatsuka, Takahiro Narishige, Hiroaki Shimokawa, Akira Takeshita

Research output: Contribution to journalArticlepeer-review

Abstract

Endothelium-derived nitric oxide (EDNO) has been implicated in the modulation of coronary arterial tone. The aim of this study was to determine if metabolic coronary vasodilation induced by pacing tachycardia is altered by the inhibition of EDNO synthesis. Before and after the intracoronary infusion of an inhibitor of EDNO synthesis (Nω-nitro-L-arginine-methyl-ester, L-NAME), changes in coronary blood flow (CBF), regional myocar-dial blood flow (MBF), and myocardial oxygen consumption (MVo2) were measured in anesthetized dogs in response to atrial pacing tachycardia. Increasing the heart rate from 109 ± 10 to 160 beats/min by pacing produced significant increases in CBF (p < 0.05), MVo2(p < 0.05), and MBF in each sublayer of the myocardium (p < 0.05). L-NAME did not alter the pacing-induced increases in CBF, MVo2, or regional MBF. In addition, the ratio of the tachycardia-induced increase in CBF to the increase in MVo2was not changed by L-NAME. The coronary vasodilation evoked by acetylcholine was attenuated by L-NAME (p < 0.05). However, the response to sodium nitroprusside was not altered. These results suggest that EDNO does not play a primary role in the mechanism mediating metabolic coronary vasodilation induced by pacing tachycardia in dogs.

Original languageEnglish
Pages (from-to)437-444
Number of pages8
JournalJournal of cardiovascular pharmacology
Volume26
Issue number3
DOIs
Publication statusPublished - 1995 Sept

Keywords

  • Coronary circulation
  • Endothelium-derived relaxing factor
  • Nitric oxide

ASJC Scopus subject areas

  • Pharmacology
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Endothelium-derived nitric oxide does not modulate metabolic coronary vasodilation induced by tachycardia in dogs'. Together they form a unique fingerprint.

Cite this