Enhanced water splitting under modal strong coupling conditions

Xu Shi, Kosei Ueno, Tomoya Oshikiri, Quan Sun, Keiji Sasaki, Hiroaki Misawa

Research output: Contribution to journalArticlepeer-review

169 Citations (Scopus)


Strong coupling between plasmons and optical modes, such as waveguide or resonator modes, gives rise to a splitting in the plasmon absorption band. As a result, two new hybrid modes are formed that exhibit near-field enhancement effects. These hybrid modes have been exploited to improve light absorption in a number of systems. Here we show that this modal strong coupling between a Fabry–Pérot nanocavity mode and a localized surface plasmon resonance (LSPR) facilitates water splitting reactions. We use a gold nanoparticle (Au-NP)/TiO2/Au-film structure as a photoanode. This structure exhibits modal strong coupling between the Fabry–Pérot nanocavity modes of the TiO2 thin film/Au film and LSPR of the Au NPs. Electronic excitation of the Au NPs is promoted by the optical hybrid modes across a broad range of wavelengths, followed by a hot electron transfer to TiO2. A key feature of our structure is that the Au NPs are partially inlaid in the TiO2 layer, which results in an enhancement of the coupling strength and water-oxidation efficiency. We observe an 11-fold increase in the incident photon-to-current conversion efficiency with respect to a photoanode structure with no Au film. Also, the internal quantum efficiency is enhanced 1.5 times under a strong coupling over that under uncoupled conditions.

Original languageEnglish
Pages (from-to)953-958
Number of pages6
JournalNature Nanotechnology
Issue number10
Publication statusPublished - 2018 Oct 1
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Enhanced water splitting under modal strong coupling conditions'. Together they form a unique fingerprint.

Cite this