Abstract
We assumed that the extra energy supplied by gamma-ray irradiation produced cross-links in 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer grafted cross-linked polyethylene (CLPE-g-MPC) and investigated its effects on the tribological properties of CLPE-g-MPC. In this study, we found that the gamma-ray irradiation produced cross-links in three kinds of regions of CLPEg-MPC: poly(MPC) layer, CLPE-MPC interface, and CLPE substrate. The dynamic coefficient of friction of CLPE-g-MPC slightly increased with increasing irradiation doses. After the simulator test, both the nonsterilized and gamma-ray sterilized CLPE-g-MPC cups exhibited lower wear than the untreated CLPE ones. In particular, the gamma-ray sterilized CLPE-g-MPC cups showed extremely low and stable wear. As for the nonsterilized CLPE-g-MPC cups, the weight change varied with each cup. When the CLPE surface is modified by poly(MPC) grafting, the MPC graft polymer leads to a significant reduction in the sliding friction between the surfaces that are grafted because water thin films formed can behave as extremely efficient lubricants. Such a cross-link of poly(MPC) slightly increases the friction of CLPE by gamma-ray irradiation but provides a stable wear resistant layer on the friction surface. The cross-links formed by gamma-ray irradiation would give further longevity to the CLPE-g-MPC cups.
Original language | English |
---|---|
Pages (from-to) | 320-327 |
Number of pages | 8 |
Journal | Journal of Biomedical Materials Research - Part B Applied Biomaterials |
Volume | 84 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2008 Feb |
Keywords
- Joint replacements
- Phosphorylcholine
- Polyethylene
- Sterilization