Abstract
We examined the roles of reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI) in interferon-gamma (IFN-γ)-induced cryptococcostatic activity of murine peritoneal macrophages using N(G)-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of RNI synthesis, and superoxide dismutase (SOD) and catalase, oxygen radical scavengers. IFN-γ-activated macrophages produced nitric oxide (NO) in a dose-dependent manner, as measured by increased nitrite concentration in the culture supernatant. IFN-γ also enhanced the suppressive effect on cryptococcal growth in a similar dose-dependent manner. The induction of killing activity and NO production by an optimal dose of IFN-γ (100 U/ml) was virtually suppressed by 500 μM L-NMMA. These results confirmed the importance of the RNI-mediated effector mechanism in anticryptococcal activity of macrophages. SOD and catalase significantly enhanced the cryptococcostatic activity of macrophages induced by a suboptimal dose of IFN-γ (20 U/ml). The augmenting effect of these reagents was mediated by NO, since they potentiated the production of NO by macrophages and their effects were totally blocked by L-NMMA. Our results indicate that the IFN-γ-induced anticryptococcal activity of macrophages is dependent mostly on RNI, and suggest that the ROI system down-regulates the effector mechanism for cryptococcostasis by suppressing the RNI system.
Original language | English |
---|---|
Pages (from-to) | 436-441 |
Number of pages | 6 |
Journal | Clinical and Experimental Immunology |
Volume | 103 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1996 |
Externally published | Yes |
Keywords
- Cryptococcus neoformans
- Interferon-gamma
- Macrophages
- Nitric oxide
- Oxygen radical scavengers
- Superoxide
ASJC Scopus subject areas
- Immunology and Allergy
- Immunology