TY - JOUR
T1 - Entrainer effects on enantiodifferentiating photocyclization of 5-hydroxy-1,1-diphenylpentene in near-critical and supercritical carbon dioxide
AU - Nishiyama, Yasuhiro
AU - Wada, Takehiko
AU - Kakiuchi, Kiyomi
AU - Inoue, Yoshihisa
PY - 2012/7/6
Y1 - 2012/7/6
N2 - Enantiodifferentiating photocyclization of 5-hydroxy-1,1-diphenyl-1-pentene (1) sensitized by bis(1,2;4,5-di-O-isopropylidene-α-fructopyranosyl) 1,4-naphthalenedicarboxylate (2) was performed in near-critical and supercritical carbon dioxide media containing organic entrainers to obtain a chiral tetrahydrofuran derivative (3) in enantiomeric excess (ee) higher than those obtained in conventional organic solvents. Interestingly, the entrainer-driven ee enhancement did not depend on the entrainer polarity, which is in contrast to the behavior of the ee observed upon selective solvation in nonpolar organic solvents. This indicates that entrainer clustering around the intervening exciplex is essential in order to keep the intimate sensitizer-substrate contact within the exciplex. Therefore, the clustering itself, rather than its property, is more crucial to prevent the dissociative diffusion to gaseous CO 2. The wider allowance in choosing the entrainer enables us to use more "green" solvents for achieving the ee enhancement, while reducing the environmental risk.
AB - Enantiodifferentiating photocyclization of 5-hydroxy-1,1-diphenyl-1-pentene (1) sensitized by bis(1,2;4,5-di-O-isopropylidene-α-fructopyranosyl) 1,4-naphthalenedicarboxylate (2) was performed in near-critical and supercritical carbon dioxide media containing organic entrainers to obtain a chiral tetrahydrofuran derivative (3) in enantiomeric excess (ee) higher than those obtained in conventional organic solvents. Interestingly, the entrainer-driven ee enhancement did not depend on the entrainer polarity, which is in contrast to the behavior of the ee observed upon selective solvation in nonpolar organic solvents. This indicates that entrainer clustering around the intervening exciplex is essential in order to keep the intimate sensitizer-substrate contact within the exciplex. Therefore, the clustering itself, rather than its property, is more crucial to prevent the dissociative diffusion to gaseous CO 2. The wider allowance in choosing the entrainer enables us to use more "green" solvents for achieving the ee enhancement, while reducing the environmental risk.
UR - http://www.scopus.com/inward/record.url?scp=84863611397&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863611397&partnerID=8YFLogxK
U2 - 10.1021/jo300816w
DO - 10.1021/jo300816w
M3 - Article
C2 - 22681305
AN - SCOPUS:84863611397
SN - 0022-3263
VL - 77
SP - 5681
EP - 5686
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 13
ER -