TY - JOUR
T1 - Estimated distribution of specific membrane resistance in hippocampal CA1 pyramidal neuron
AU - Omori, Toshiaki
AU - Aonishi, Toru
AU - Miyakawa, Hiroyoshi
AU - Inoue, Masashi
AU - Okada, Masato
N1 - Funding Information:
This work was partially supported by Grant-in-Aid for Scientific Research for Young Scientists (B) (Nos. 17700250 (T.O.) and 18700299 (T.A.)), Grant-in-Aid for Scientific Research on Priority Areas (Nos. 18020007 (M.O.) and 18079003 (M.O.)), and Grant-in-Aid for Scientific Research (B) (No. 17300096 (H.M.)), and Grant-in-Aid for Scientific Research (C) (No. 16500093 (M.O.)) from MEXT and JSPS of Japan. T.O. was partially supported by Research Fellowship from Japan Society for the Promotion of Science for Young Scientists.
PY - 2006/12/13
Y1 - 2006/12/13
N2 - It has been suggested that dendritic membrane properties play an important role in a synaptic integration. In particular, the specific membrane resistance, one of membrane properties, has been reported to be non-uniformly distributed in a single neuron, although the spatial distribution of the specific membrane resistance is still unclear. To reveal its non-uniformity in dendrite, we estimated the spatial distribution of specific membrane resistance in a single neuron, based on voltage imaging data, observed optically in hippocampal CA1 slices. As the optically recorded data, we used bi-directional propagations of subthreshold excitatory postsynaptic potentials in dendrite, which were not be reproduced numerically with uniform-specific membrane resistance. By numerical simulations for multi-compartment models with non-uniformity of specific membrane resistance, we estimated that the distribution obeys a step function; the optically recorded data were consistently reproduced for the distribution with a steep decrease in the specific membrane resistance at the distal apical dendrite, which occurs 300-500 μm away from the soma. In the estimated distribution, the specific membrane resistance at the distal side is less than about 103 Ωcm2, whereas the resistance at the proximal side is greater than about 104 Ωcm2. This result implies that the specific membrane resistance decreases drastically at the distal apical dendrite in hippocampal CA1 pyramidal neuron.
AB - It has been suggested that dendritic membrane properties play an important role in a synaptic integration. In particular, the specific membrane resistance, one of membrane properties, has been reported to be non-uniformly distributed in a single neuron, although the spatial distribution of the specific membrane resistance is still unclear. To reveal its non-uniformity in dendrite, we estimated the spatial distribution of specific membrane resistance in a single neuron, based on voltage imaging data, observed optically in hippocampal CA1 slices. As the optically recorded data, we used bi-directional propagations of subthreshold excitatory postsynaptic potentials in dendrite, which were not be reproduced numerically with uniform-specific membrane resistance. By numerical simulations for multi-compartment models with non-uniformity of specific membrane resistance, we estimated that the distribution obeys a step function; the optically recorded data were consistently reproduced for the distribution with a steep decrease in the specific membrane resistance at the distal apical dendrite, which occurs 300-500 μm away from the soma. In the estimated distribution, the specific membrane resistance at the distal side is less than about 103 Ωcm2, whereas the resistance at the proximal side is greater than about 104 Ωcm2. This result implies that the specific membrane resistance decreases drastically at the distal apical dendrite in hippocampal CA1 pyramidal neuron.
KW - Dendrite
KW - Multi-compartment model
KW - Passive membrane properties
KW - Single neuron
KW - Synaptic integration
UR - http://www.scopus.com/inward/record.url?scp=33751560999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751560999&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2006.09.095
DO - 10.1016/j.brainres.2006.09.095
M3 - Article
C2 - 17113056
AN - SCOPUS:33751560999
SN - 0006-8993
VL - 1125
SP - 199
EP - 208
JO - Molecular Brain Research
JF - Molecular Brain Research
IS - 1
ER -