@inproceedings{970f10bcb1f542c1bd9accccd6292237,
title = "Evaluation of tool performance of recycle-type Fe3Al based alloy for pure Cu",
abstract = "Recycle-type Fe3Al (hereinafter designated as Re-Fe3Al) based alloys reinforced by the carbides of TiC or ZrC were processed by the high frequency induction melting method using a high-carbon Cr steel sludge, Al can scraps and the transition metals of Ti or Zr. The carbides were synthesized by in-situ reaction between the transition metal and carbon in the molten iron aluminum alloy. Vickers hardness values are 309HV0.5 for Re-Fe3Al/TiC alloy, and 473HV0.5 for Re-Fe3Al/ZrC alloy, which are higher than that of P-Fe3Al (preprared from pure-Fe and -Al). The cutting performance of the Re-Fe3Al baed alloys was compared with a High-Speed-Steel (HSS) by cutting tests for pure-Cu extruded bar (C1020) using a lathe under a dry condition. Tool life limit was estimated from frank wear length after the cutting tests of C1020 by finish-machining. Tool life limit of Re-Fe3Al/TiC alloy is more than16 min; P-Fe3Al was 12 min; HSS was 8 min, Re-Fe3Al/ZrC alloy was 7 min at the cutting speed of 100m/min. Also, tool life limit of the Re-Fe3Al/TiC alloy was more than twice times as long as that of the HSS at the cutting speed of 300/min. The relationship between cutting speed and tool life limit clearly indicated that the Re-Fe3Al/TiC alloy was better than the HSS at a higher cutting speed. Therefore, it was concluded that Re-Fe3Al/TiC alloy has excellent cutting tool performance.",
keywords = "Carbide, Composite, Recycle, Tool, Wear",
author = "Takaomi Itoi and Tomoaki Sudo and Kyosuke Yoshimi",
year = "2014",
language = "English",
isbn = "9783038350736",
series = "Materials Science Forum",
publisher = "Trans Tech Publications Ltd",
pages = "1142--1146",
editor = "B. Mishra and Mihail. Ionescu and T. Chandra",
booktitle = "THERMEC 2013",
note = "8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013 ; Conference date: 02-12-2013 Through 06-12-2013",
}