TY - JOUR
T1 - Evidence from massive siderite beds for a CO2-rich atmosphere before ∼1.8 billion years ago
AU - Ohmoto, Hiroshi
AU - Watanabe, Yumiko
AU - Kumazawa, Kazumasa
N1 - Funding Information:
Acknowledgements This work was supported by the National Science Foundation-MRSEC, and J.S.A. was primarily supported by the Korea Science and Engineering Foundation through the Center for Strongly Correlated Materials Research, Seoul National University.
Funding Information:
Acknowledgements We are grateful to K. Hayashi and T. Kakegawa for assistance in petrographical and geochemical investigations of the siderite samples. We thank M. Arthur, H. Barnes, E. Bazilevskaya, P. Deines, L. Kump, A. Lasaga, K. Spangler and K. Yamaguchi for comments on earlier drafts. This work was supported by grants to H.O. from the NSF (Geochemistry Program) and NASA (Astrobiology and Exobiology programmes).
PY - 2004/5/27
Y1 - 2004/5/27
N2 - It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O 2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO 2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.
AB - It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before ∼2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O 2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO 2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.
UR - http://www.scopus.com/inward/record.url?scp=2642564509&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2642564509&partnerID=8YFLogxK
U2 - 10.1038/nature02573
DO - 10.1038/nature02573
M3 - Article
C2 - 15164058
AN - SCOPUS:2642564509
SN - 0028-0836
VL - 429
SP - 395
EP - 399
JO - Nature
JF - Nature
IS - 6990
ER -