Experimental analysis for the anisotropic flows in cancellous bone

Makoto Ito, Simon Andre Tupin, Hitomi Anzai, Anna Suzuki, Makoto Ohta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Cancellous bone contains bone marrow where hematopoietic stem cells (HSCs) are produced. Those cells represent an interest in the treatment of leukemia during which transplantation of bone marrow is performed to replace patient degraded cells. HSCs are usually harvested by a puncture in the cancellous bone of the donor's ilium using a needle. However, this procedure can cause severe burden to the donor because of its high invasiveness. The flow of bone marrow is strongly related to the harvesting of HSCs and permeability is one of the major parameters to characterize cancellous bone. Previous researches have already shown an anisotropy of permeability in femur, whereas punctures are usually performed in the iliac cancellous bone. The objective of this paper is to characterize the anisotropic permeability of iliac cancellous bone. Digital images of a porcine iliac cancellous bone sample were obtained by micro-computed tomography (micro-CT), and three locations were selected to fabricate bone models, reproduced by 3D printing at three times magnification. To compare the structure of manufactured models, porosity and its variations along X, Y and Z direction were evaluated from micro-CT images. To measure permeability, a specific perfusion system was developed. The pressure drop between the upstream and the downstream of bone models were measured at different flow rates, reaching a Reynolds number of 27-158, appropriate for the aspiration condition. Darcy-Forchheimer's law was then applied to calculate the permeability and Forchheimer coefficient of bone models. Results revealed different porosities and resultant permeabilities for each bone nodels. A positive correlation links those two parameters. Different fluctuations of porosity were evaluated along each direction although no significant difference of average porosity was observed. On the other hand, different permeabilities and Forchheimer coefficients were measured in each direction with various degrees of anisotropy. Permeabilities in three orthogonal directions of the model ranged from 1.96×10-10 to 4.29×10-10 m2. Results indicate that transport properties in cancellous bone depend on the flow directions. The anisotropy of permeability can be used for evaluation of flow in cancellous bone.

Original languageEnglish
Title of host publicationBiomedical and Biotechnology Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858363
DOIs
Publication statusPublished - 2017
EventASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017 - Tampa, United States
Duration: 2017 Nov 32017 Nov 9

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3

Other

OtherASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Country/TerritoryUnited States
CityTampa
Period17/11/317/11/9

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Experimental analysis for the anisotropic flows in cancellous bone'. Together they form a unique fingerprint.

Cite this