Experimental analysis of transonic buffet on a 3D swept wing using fast-response pressure-sensitive paint

Yosuke Sugioka, Shunsuke Koike, Kazuyuki Nakakita, Daiju Numata, Taku Nonomura, Keisuke Asai

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

Transonic buffeting phenomena on a three-dimensional swept wing were experimentally analyzed using a fast-response pressure-sensitive paint (PSP). The experiment was conducted using an 80%-scaled NASA Common Research Model in the Japan Aerospace Exploration Agency (JAXA) 2 m × 2 m Transonic Wind Tunnel at a Mach number of 0.85 and a chord Reynolds number of 1.54 × 106. The angle of attack was varied between 2.82° and 6.52°. The calculation of root-mean-square (RMS) pressure fluctuations and spectral analysis were performed on measured unsteady PSP images to analyze the phenomena under off-design buffet conditions. We found that two types of shock behavior exist. The first is a shock oscillation characterized by the presence of “buffet cells” formed at a bump Strouhal number St of 0.3–0.5, which is observed under all off-design conditions. This phenomenon arises at the mid-span wing and is propagated spanwise from inboard to outboard. The other is a large spatial amplitude shock oscillation characterized by low-frequency broadband components at St < 0.1, which appears at higher angles of attack (α ≥ 6.0°) and behaves more like two-dimensional buffet. The transition between these two shock behaviors correlates well with the rapid increase of the wing-root strain fluctuation RMS.

Original languageEnglish
Article number108
JournalExperiments in Fluids
Volume59
Issue number6
DOIs
Publication statusPublished - 2018 Jun 1

Fingerprint

Dive into the research topics of 'Experimental analysis of transonic buffet on a 3D swept wing using fast-response pressure-sensitive paint'. Together they form a unique fingerprint.

Cite this