TY - JOUR
T1 - Experimental and theoretical study of thermodynamic effects in a quantum annealer
AU - Kadowaki, Tadashi
AU - Ohzeki, Masayuki
N1 - Funding Information:
Acknowledgment We are grateful to S. Tanaka, M. J. Miyama, H. Irie and S. Okada and D-Wave support team for their helpful discussions and suggestions. We are also grateful to the reviewer for pointing out the relation between our proposed method and stochastic Schrödinger equation. Part of the work is financially supported by MEXT KAKENHI Grant Nos. 15H03699 and 16H04382, and by ImPACT and JST START.
Publisher Copyright:
©2019 The Physical Society of Japan
PY - 2019
Y1 - 2019
N2 - Quantum devices are affected by intrinsic and environmental noises. An in-depth characterization of noise effects is essential for exploiting noisy quantum computing. To this end, we studied the energy dissipative behavior of a quantum annealer via experiments and numerical simulations. Our investigation adopts a recently proposed technique that interpolates between pure quantum dynamics and pure thermodynamics. Experiments were conducted on a quantum annealer with an anneal pause function, which inserts a thermal relaxation period into the annealing schedule by pausing the transverse field, which is a source of quantum fluctuation. After investigating the special Hamiltonian that characterizes the quantum thermodynamics of the system, we then observed enhancement of thermodynamic signature depending on the anneal pause parameter. The time development of the state vector, observed in the open quantum simulation, provides rich information for investigating phenomena beyond energy-gap analysis. We identified a special eigenstate bridges ground states far-separated in Hilbert space and the transfer probabilities from one ground state to another. This finding can improve the sampling uniformity by reducing the sampling bias in finding the classical ground states in the quantum annealer. Our study does not only characterize the open quantum phenomenon of the specific Hamiltonian but also demonstrates the usefulness of the method in investigating noisy quantum devices.
AB - Quantum devices are affected by intrinsic and environmental noises. An in-depth characterization of noise effects is essential for exploiting noisy quantum computing. To this end, we studied the energy dissipative behavior of a quantum annealer via experiments and numerical simulations. Our investigation adopts a recently proposed technique that interpolates between pure quantum dynamics and pure thermodynamics. Experiments were conducted on a quantum annealer with an anneal pause function, which inserts a thermal relaxation period into the annealing schedule by pausing the transverse field, which is a source of quantum fluctuation. After investigating the special Hamiltonian that characterizes the quantum thermodynamics of the system, we then observed enhancement of thermodynamic signature depending on the anneal pause parameter. The time development of the state vector, observed in the open quantum simulation, provides rich information for investigating phenomena beyond energy-gap analysis. We identified a special eigenstate bridges ground states far-separated in Hilbert space and the transfer probabilities from one ground state to another. This finding can improve the sampling uniformity by reducing the sampling bias in finding the classical ground states in the quantum annealer. Our study does not only characterize the open quantum phenomenon of the specific Hamiltonian but also demonstrates the usefulness of the method in investigating noisy quantum devices.
UR - http://www.scopus.com/inward/record.url?scp=85067291651&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067291651&partnerID=8YFLogxK
U2 - 10.7566/JPSJ.88.061008
DO - 10.7566/JPSJ.88.061008
M3 - Review article
AN - SCOPUS:85067291651
SN - 0031-9015
VL - 88
JO - Journal of the Physical Society of Japan
JF - Journal of the Physical Society of Japan
IS - 6
M1 - 061008
ER -