TY - GEN
T1 - Exploiting the potential of standard convolutional autoencoders for image restoration by evolutionary search
AU - Suganuma, Masanori
AU - Ozay, Mete
AU - Okatani, Takayuki
N1 - Publisher Copyright:
© 2018 by the Authors All rights reserved.
PY - 2018
Y1 - 2018
N2 - Researchers have applied deep neural networks to image restoration tasks, in which they proposed various network architectures, loss functions, and training methods. In particular, adversarial training, which is employed in recent studies, seems to be a key ingredient to success. In this paper, we show that simple convolutional autoencoders (CAEs) built upon only standard network components, i.e., convolutional layers and skip connections, can outperform the state-of-the-art methods which employ adversarial training and sophisticated loss functions. The secret is to search for good architectures using an evolutionary algorithm. All we did was to train the optimized CAEs by minimizing the l2 loss between reconstructed images and their ground truths using the ADAM optimizer. Our experimental results show that this approach achieves 27.8 dB peak signal to noise ratio (PSNR) on the CelebA dataset and 33.3 dB on the SVHN dataset, compared to 22.8 dB and 19.0 dB provided by the former state-of-the-art methods, respectively.
AB - Researchers have applied deep neural networks to image restoration tasks, in which they proposed various network architectures, loss functions, and training methods. In particular, adversarial training, which is employed in recent studies, seems to be a key ingredient to success. In this paper, we show that simple convolutional autoencoders (CAEs) built upon only standard network components, i.e., convolutional layers and skip connections, can outperform the state-of-the-art methods which employ adversarial training and sophisticated loss functions. The secret is to search for good architectures using an evolutionary algorithm. All we did was to train the optimized CAEs by minimizing the l2 loss between reconstructed images and their ground truths using the ADAM optimizer. Our experimental results show that this approach achieves 27.8 dB peak signal to noise ratio (PSNR) on the CelebA dataset and 33.3 dB on the SVHN dataset, compared to 22.8 dB and 19.0 dB provided by the former state-of-the-art methods, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85057302332&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057302332&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85057302332
T3 - 35th International Conference on Machine Learning, ICML 2018
SP - 7592
EP - 7601
BT - 35th International Conference on Machine Learning, ICML 2018
A2 - Krause, Andreas
A2 - Dy, Jennifer
PB - International Machine Learning Society (IMLS)
T2 - 35th International Conference on Machine Learning, ICML 2018
Y2 - 10 July 2018 through 15 July 2018
ER -