TY - JOUR
T1 - Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system
AU - Takahashi, Masanori
AU - Osumi, Noriko
N1 - Funding Information:
We thank Ms. Sayaka Makino, Ms. Yumi Watanabe and Dr. Yoko Arai for technical support, and Dr. Takayoshi Inoue for critical reading and valuable comments. We also thank Drs. Isao Matsuo, Ahmed Mansouri, Peter Gruss, Masamitsu Tanaka and Masayuki Yamamoto for providing reagents used in this study. Islet1/2 antibody was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. We also thank all other members of Prof. Osumi laboratory for valuable comments and discussion. This work was supported by KAKENHI on Priority Areas-A nuclear system to DECODE (#17054003 to M.T), Molecular Brain Science (#17024001 to N.O.) and on Young Scientist Research B (#17700300 and #20700281 to M.T.) from MEXT of Japan, The Core Research for Evolutional Science and Technology from Japan Science and Technology Corporation (JST) (to N.O), Global COE Program "Basic and Translational Research Center for Global Brain Science" of MEXT and GONRYO Foundation for the promotion of medical Science (to. M.T.).
PY - 2008
Y1 - 2008
N2 - Background. Vertebrate classic cadherins are divided into type I and type II subtypes, which are individually expressed in brain subdivisions (e.g., prosomeres, rhombomeres, and progenitor domains) and in specific neuronal circuits in region-specific manners. We reported previously the expression of cadherin19 (cad19) in Schwann cell precursors. Cad19 is a type II classic cadherin closely clustered on a chromosome with cad7 and cad20. The expression patterns of cad7 and cad20 have been reported previously in chick embryo but not in the developing and adult central nervous system of mammals. In this study, we identified rat cad7 and cad20 and analyzed their expression patterns in embryonic and adult rat brains. Results. Rat cad7 protein showed 92% similarity to chick cad7, while rat cad20 protein had 76% similarity to Xenopus F-cadherin. Rat cad7 mRNA was initially expressed in the anterior neural plate including presumptive forebrain and midbrain regions, and then accumulated in cells of the dorsal neural tube and in rhombomere boundary cells of the hindbrain. Expression of rat cad20 mRNA was specifically localized in the anterior neural region and rhombomere 2 in the early neural plate, and later in longitudinally defined ventral cells of the hindbrain. The expression boundaries of cad7 and cad20 corresponded to those of region-specific transcription factors such as Six3, Irx3 and Otx2 in the neural plate, and Dbx2 and Gsh1 in the hindbrain. At later stages, the expression of cad7 and cad20 disappeared from neuroepithelial cells in the hindbrain, and was almost restricted to postmitotic cells, e.g. somatic motor neurons and precerebellar neurons. These results emphasized the diversity of cad7 and cad20 expression patterns in different vertebrate species, i.e. birds and rodents. Conclusion. Taken together, our findings suggest that the expression of cad7 and cad20 demarcates the compartments, boundaries, progenitor domains, specific nuclei and specific neural circuits during mammalian brain development.
AB - Background. Vertebrate classic cadherins are divided into type I and type II subtypes, which are individually expressed in brain subdivisions (e.g., prosomeres, rhombomeres, and progenitor domains) and in specific neuronal circuits in region-specific manners. We reported previously the expression of cadherin19 (cad19) in Schwann cell precursors. Cad19 is a type II classic cadherin closely clustered on a chromosome with cad7 and cad20. The expression patterns of cad7 and cad20 have been reported previously in chick embryo but not in the developing and adult central nervous system of mammals. In this study, we identified rat cad7 and cad20 and analyzed their expression patterns in embryonic and adult rat brains. Results. Rat cad7 protein showed 92% similarity to chick cad7, while rat cad20 protein had 76% similarity to Xenopus F-cadherin. Rat cad7 mRNA was initially expressed in the anterior neural plate including presumptive forebrain and midbrain regions, and then accumulated in cells of the dorsal neural tube and in rhombomere boundary cells of the hindbrain. Expression of rat cad20 mRNA was specifically localized in the anterior neural region and rhombomere 2 in the early neural plate, and later in longitudinally defined ventral cells of the hindbrain. The expression boundaries of cad7 and cad20 corresponded to those of region-specific transcription factors such as Six3, Irx3 and Otx2 in the neural plate, and Dbx2 and Gsh1 in the hindbrain. At later stages, the expression of cad7 and cad20 disappeared from neuroepithelial cells in the hindbrain, and was almost restricted to postmitotic cells, e.g. somatic motor neurons and precerebellar neurons. These results emphasized the diversity of cad7 and cad20 expression patterns in different vertebrate species, i.e. birds and rodents. Conclusion. Taken together, our findings suggest that the expression of cad7 and cad20 demarcates the compartments, boundaries, progenitor domains, specific nuclei and specific neural circuits during mammalian brain development.
UR - http://www.scopus.com/inward/record.url?scp=53649108149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=53649108149&partnerID=8YFLogxK
U2 - 10.1186/1471-213X-8-87
DO - 10.1186/1471-213X-8-87
M3 - Article
C2 - 18801203
AN - SCOPUS:53649108149
SN - 1471-213X
VL - 8
JO - BMC Developmental Biology
JF - BMC Developmental Biology
M1 - 87
ER -