Fabrication of Ti-6Al-7Nb alloys by metal injection molding

Yoshinori Ltoh, Hideshi Miura, Kenji Sato, Mitsuo Niinomi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)

Abstract

The metal injection molding process was applied to produce Ti-6Al-7Nb alloys using 3 types of mixed powders. The first is a mixture of Ti and Al-Nb pre-alloyed powders, the second is a mixture of Ti, Ti-Al alloy and Nb powders, and the third is a mixture of elemental powders of Ti, Al and Nb. The sintered compacts using the first and second powders showed higher density and mechanical properties than the compacts using the third powder which showed many large pores formed due to the dissolution of Al particles during the sintering steps. Eventually, the compacts using a mixture of Ti+Al-Nb or Ti+Ti-Al+Nb powders showed tensile strength of above 800MPa and elongation of above 10%, which are similar to the properties of wrought materials.

Original languageEnglish
Title of host publicationProgress in Powder Metallurgy - Proceedings of the 2006 Powder Metallurgy World Congress and Exhibition (PM 2006)
PublisherTrans Tech Publications Ltd
Pages357-360
Number of pages4
EditionPART 1
ISBN (Print)0878494197, 9780878494194
DOIs
Publication statusPublished - 2007
Externally publishedYes
Event2006 Powder Metallurgy World Congress and Exhibition, PM 2006 - Busan, Korea, Republic of
Duration: 2006 Sept 242006 Sept 28

Publication series

NameMaterials Science Forum
NumberPART 1
Volume534-536
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other2006 Powder Metallurgy World Congress and Exhibition, PM 2006
Country/TerritoryKorea, Republic of
CityBusan
Period06/9/2406/9/28

Keywords

  • Mechanical properties
  • Metal injection molding
  • Mixed powder
  • Sintering condition
  • Ti-6Al-7Nb

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Fabrication of Ti-6Al-7Nb alloys by metal injection molding'. Together they form a unique fingerprint.

Cite this