TY - JOUR
T1 - Fe azaphthalocyanine unimolecular layers (Fe AzULs) on carbon nanotubes for realizing highly active oxygen reduction reaction (ORR) catalytic electrodes
AU - Abe, Hiroya
AU - Hirai, Yutaro
AU - Ikeda, Susumu
AU - Matsuo, Yasutaka
AU - Matsuyama, Haruyuki
AU - Nakamura, Jun
AU - Matsue, Tomokazu
AU - Yabu, Hiroshi
N1 - Funding Information:
This work was partially supported by Kakenhi Grants-in-Aid (Nos. 17H01223, 18H05482, and 19K15598) from the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for JSPS Fellows from JSPS (No. 16J02105). This work was also partially supported by the WPI-AIMR fusion research program under the World Premier International Research Center Initiative (WPI), the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). Y.M., H.A., and H.Y. would like to express their gratitude to Mrs. Naomi Hirai of Hokkaido University for technical assistance with HAADF-EELS and Nanotechnology platform support. H.A., Y.H., and H.Y. would like to thank Mr. Nozaki Kohei of Tohoku University for support with electrochemical measurements and structural analyses. H.A. would like to thank Mr. Koji Yokoyama of Tohoku University for very helpful advice regarding electrochemical measurements. Mass spectrometry was partially supported by IA division, GFC, Hokkaido University.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - A new class of Pt-free catalysts was designed that included molecular iron phthalocyanine (FePc) derivatives, namely, iron azaphthalocyanine (FeAzPc) unimolecular layers (Fe AzULs) adsorbed on oxidized multiwall carbon nanotubes (oxMWCNTs). FeAzPcs were dissolved in organic solvents such as dimethyl sulfoxide (DMSO), and catalytic electrodes modified with molecularly adsorbed FeAzPcs were successfully prepared. The optimized composition of the catalytic electrodes was determined, and the electrodes exhibited superior activity for the oxygen reduction reaction (ORR) and better durability than conventional FePc catalytic electrodes and commercial Pt/C due to the electron-withdrawing properties of the pyridinic nitrogen in FeAzPcs. The catalytic electrodes that were molecularly modified with FeAzPcs have higher activities than those composed of FeAzPc crystals and oxMWCNTs. To the best of our knowledge, among all of the conventional catalysts based on modified MWCNTs and oxMWCNTs, this catalyst exhibits the highest activity. Unlike other Pt-free catalytic electrodes, the Fe AzUL catalytic electrodes can be prepared by low-cost processing without pyrolysis and are therefore promising catalytic electrode materials for applications, such as polymer electrolyte fuel cells and metal–air batteries.
AB - A new class of Pt-free catalysts was designed that included molecular iron phthalocyanine (FePc) derivatives, namely, iron azaphthalocyanine (FeAzPc) unimolecular layers (Fe AzULs) adsorbed on oxidized multiwall carbon nanotubes (oxMWCNTs). FeAzPcs were dissolved in organic solvents such as dimethyl sulfoxide (DMSO), and catalytic electrodes modified with molecularly adsorbed FeAzPcs were successfully prepared. The optimized composition of the catalytic electrodes was determined, and the electrodes exhibited superior activity for the oxygen reduction reaction (ORR) and better durability than conventional FePc catalytic electrodes and commercial Pt/C due to the electron-withdrawing properties of the pyridinic nitrogen in FeAzPcs. The catalytic electrodes that were molecularly modified with FeAzPcs have higher activities than those composed of FeAzPc crystals and oxMWCNTs. To the best of our knowledge, among all of the conventional catalysts based on modified MWCNTs and oxMWCNTs, this catalyst exhibits the highest activity. Unlike other Pt-free catalytic electrodes, the Fe AzUL catalytic electrodes can be prepared by low-cost processing without pyrolysis and are therefore promising catalytic electrode materials for applications, such as polymer electrolyte fuel cells and metal–air batteries.
UR - http://www.scopus.com/inward/record.url?scp=85073503526&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073503526&partnerID=8YFLogxK
U2 - 10.1038/s41427-019-0154-6
DO - 10.1038/s41427-019-0154-6
M3 - Article
AN - SCOPUS:85073503526
SN - 1884-4049
VL - 11
JO - NPG Asia Materials
JF - NPG Asia Materials
IS - 1
M1 - 57
ER -