Fermi surface and interlayer transport in the two-dimensional magnetic organic conductor (Me-3,5-DIP)[Ni(dmit)2]2

K. Hazama, S. Uji, Y. Takahide, M. Kimata, H. Satsukawa, A. Harada, T. Terashima, Y. Kosaka, H. M. Yamamoto, R. Kato

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Resistance and magnetic torque measurements at low temperatures under high magnetic fields have been performed for a magnetic organic conductor (Me-3,5-DIP)[Ni(dmit)2]2 to investigate the electronic state. This conductor contains two types of Ni(dmit)2]2 anion layers, layers I and II. Shubnikov-de Haas and angular-dependent magnetoresistance oscillations clearly show that there exists a two-dimensional Fermi surface in layer II, whose spins are strongly coupled with the localized spins in layer I. When the magnetic field is applied parallel to the layers, the interlayer resistance shows a sharp minimum at ∼8 T and then slow oscillation at higher fields. The minimum is explained by the combined effect of the field-dependent magnetic potential and momentum shift in the interlayer tunneling. The mechanism of the slow oscillation is not clarified yet.

Original languageEnglish
Article number165129
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume83
Issue number16
DOIs
Publication statusPublished - 2011 Apr 29

Fingerprint

Dive into the research topics of 'Fermi surface and interlayer transport in the two-dimensional magnetic organic conductor (Me-3,5-DIP)[Ni(dmit)2]2'. Together they form a unique fingerprint.

Cite this