Ferromagnetically ordered metal in the single-band hubbard model

Akihisa Koga, Yusuke Kamogawa, Joji Nasu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study a ferromagnetic instability in a single-band Hubbard model on the hypercubic lattice away from half filling. Using dynamical mean-field theory with the continuous-time quantum Monte Carlo simulations based on the segment algorithm, we calculate the magnetic susceptibility in the weak and strong coupling regions systematically. We then find how ferromagnetic fluctuations are enhanced when the interaction strength and density of holes are varied. The efficiency of the double flip updates in the Monte Carlo simulations is also addressed.

Original languageEnglish
Title of host publicationProceedings of the 14th Asia Pacific Physics Conference
EditorsTeck-Yong Tou, Jun'ichi Yokoyama, Roslan Abdul Shukor, Kazuhiro Tanaka, Hyoung Joon Choi, Ryoji Matsumoto, Oi-Hoong Chin, Jia Hou Chin, Kuru Ratnavelu
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735440630
DOIs
Publication statusPublished - 2021 Feb 5
Event14th Asia Pacific Physics Conference, APPC 2019 - Kuching, Sarawak, Malaysia
Duration: 2019 Nov 172019 Nov 22

Publication series

NameAIP Conference Proceedings
Volume2319
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference14th Asia Pacific Physics Conference, APPC 2019
Country/TerritoryMalaysia
CityKuching, Sarawak
Period19/11/1719/11/22

Fingerprint

Dive into the research topics of 'Ferromagnetically ordered metal in the single-band hubbard model'. Together they form a unique fingerprint.

Cite this