TY - JOUR
T1 - Final state problem for the cubic nonlinear Klein-Gordon equation
AU - Hayashi, Nakao
AU - Naumkin, Pavel I.
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009
Y1 - 2009
N2 - We study the final state problem for the nonlinear Klein-Gordon equation, utt +u- uxx =μ u3, t ∈ R,x ∈ R, where μR. We prove the existence of solutions in the neighborhood of the approximate solutions 2 Re U (t) w+ (t), where U (t) is the free evolution group defined by U (t) = F-1 e-it 〈φ〉 F, 〈x〉 = 1+ x2, F and F-1 are the direct and inverse Fourier transformations, respectively, and w+ (t,x) = F-1 (û+ (φ) e(3/2) iμ 〈φ〉2 u+ (φ) 2 log t), with a given final data u+ is a real-valued function and ∥ 〈φ〉3 〈 i∥φ〉 u + (φ) ∥ L∞ is small.
AB - We study the final state problem for the nonlinear Klein-Gordon equation, utt +u- uxx =μ u3, t ∈ R,x ∈ R, where μR. We prove the existence of solutions in the neighborhood of the approximate solutions 2 Re U (t) w+ (t), where U (t) is the free evolution group defined by U (t) = F-1 e-it 〈φ〉 F, 〈x〉 = 1+ x2, F and F-1 are the direct and inverse Fourier transformations, respectively, and w+ (t,x) = F-1 (û+ (φ) e(3/2) iμ 〈φ〉2 u+ (φ) 2 log t), with a given final data u+ is a real-valued function and ∥ 〈φ〉3 〈 i∥φ〉 u + (φ) ∥ L∞ is small.
UR - http://www.scopus.com/inward/record.url?scp=70350705587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350705587&partnerID=8YFLogxK
U2 - 10.1063/1.3215980
DO - 10.1063/1.3215980
M3 - Article
AN - SCOPUS:70350705587
SN - 0022-2488
VL - 50
JO - Journal of Mathematical Physics
JF - Journal of Mathematical Physics
IS - 10
M1 - 103511
ER -