Flexible porous carbon black-polymer composites with a high gauge factor

Yi Te Huang, Naoki Inomata, Zhuqing Wang, Yu Ching Lin, Takahito Ono

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


In this work, new conductive polymer films suitable for microfabrication have been developed. The solutions used are prepared by dispersing highly conductive nanoporous carbon blacks (n-CBs) in PHOTONEECE® (CBPh), polyvinyl alcohol (CBsPV), or gelatin (CBsGel). Conductive polymer composite thin films are formed by spin-coating on a clean glass substrate. The electrical conductivity and its response to strain are evaluated by a four-point bending method, which shows high gauge factors (GFs) of 150 and 523 for PVA- and gelatin-based composite films, respectively, in a low strain region. This clearly reveals the high potential capability of these novel nanocomposite films with the reported CB composite polymer showing a GF of ~100. It is considered that the porous structure of the n-CBs provides high sensitivity of flexible sensing elements that can be implemented into microfabrication processes easily.

Original languageEnglish
Pages (from-to)2527-2538
Number of pages12
JournalSensors and Materials
Issue number7
Publication statusPublished - 2020 Jul


  • Carbon black
  • Conductive polymer
  • High gauge factor
  • Nanoporous
  • Strain sensing


Dive into the research topics of 'Flexible porous carbon black-polymer composites with a high gauge factor'. Together they form a unique fingerprint.

Cite this