TY - JOUR
T1 - Fluffy dust forms icy planetesimals by static compression
AU - Kataoka, Akimasa
AU - Tanaka, Hidekazu
AU - Okuzumi, Satoshi
AU - Wada, Koji
N1 - Funding Information:
A.K. is supported by the Research Fellowship from JSPS for Young Scientists (24·2120).
PY - 2013
Y1 - 2013
N2 - Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims. We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods. Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results. We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10 -3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is 6 AU in a typical disk. Conclusions. We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.
AB - Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims. We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods. Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results. We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10 -3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is 6 AU in a typical disk. Conclusions. We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.
KW - Methods: analytical
KW - Planets and satellites: Formation
KW - Protoplanetary disks
UR - http://www.scopus.com/inward/record.url?scp=84882317524&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84882317524&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201322151
DO - 10.1051/0004-6361/201322151
M3 - Article
AN - SCOPUS:84882317524
SN - 0004-6361
VL - 557
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - L4
ER -