Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges

Keita Nomura, Hirotomo Nishihara, Masanori Yamamoto, Atsushi Gabe, Masashi Ito, Masanobu Uchimura, Yuta Nishina, Hideki Tanaka, Minoru T. Miyahara, Takashi Kyotani

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Nano-confined spaces in nanoporous materials enable anomalous physicochemical phenomena. While most nanoporous materials including metal-organic frameworks are mechanically hard, graphene-based nanoporous materials possess significant elasticity and behave as nanosponges that enable the force-driven liquid–gas phase transition of guest molecules. In this work, we demonstrate force-driven liquid–gas phase transition mediated by nanosponges, which may be suitable in high-efficiency heat management. Compression and free-expansion of the nanosponge afford cooling upon evaporation and heating upon condensation, respectively, which are opposite to the force-driven solid–solid phase transition in shape-memory metals. The present mechanism can be applied to green refrigerants such as H2O and alcohols, and the available latent heat is at least as high as 192 kJ kg−1. Cooling systems using such nanosponges can potentially achieve high coefficients of performance by decreasing the Young’s modulus of the nanosponge.

Original languageEnglish
Article number2559
JournalNature Communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

Fingerprint

Dive into the research topics of 'Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges'. Together they form a unique fingerprint.

Cite this