Formation of an optical field with regular singular-skeleton structure by the double-phase-ramp converter

A. Khoroshun, A. Ryazantsev, O. Ryazantsev, S. Sato, Y. Kozawa, J. Masajada, A. Popiołek-Masajada, M. Szatkowski, A. Chernykh, A. Bekshaev

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


We study the system of phase singularities ('singular skeleton') formed when a quasi-plane wave (QPW) input beam diffracts at a double-phase-ramp (DPR) converter. The external (OV positions and 3D trajectories) and internal (ellipticity and orientation angle of the equal-intensity ellipses in the OV-core area) singular-skeleton features are investigated both theoretically and in experiments. The results are presented in comparison with the singular skeleton formed by the DPR when the incident beam is Gaussian. In contrast to the limited number of OVs in the synthesized OV chain, divergent 3D OV trajectories and variable OV morphologies depending on their off-axis distances, which is typical for the Gaussian input beam, it is shown that the QPW-generated diffracted beam carries a rectilinear chain of equidistant optical vortices (OV) with identical morphology parameters. Such singular-skeleton configurations can be useful for the applications to metrology and micromanipulation, in particular, for the multi-particle optical trapping and guiding.

Original languageEnglish
Article number025603
JournalJournal of Optics (United Kingdom)
Issue number2
Publication statusPublished - 2020


  • double-phase-ramp converter
  • morphology
  • optical vortex
  • quasi-plane wave
  • singular skeleton


Dive into the research topics of 'Formation of an optical field with regular singular-skeleton structure by the double-phase-ramp converter'. Together they form a unique fingerprint.

Cite this