TY - JOUR
T1 - Formation of metastable cubic-perovskite in high-pressure phase transformation of Ca(Mg, Fe, Al)Si2O6
AU - Asahara, Yuki
AU - Ohtani, Eiji
AU - Kondo, Tadashi
AU - Kubo, Tomoaki
AU - Miyajima, Nobuyoshi
AU - Nagase, Toshiro
AU - Fujino, Kiyoshi
AU - Yagi, Takehiko
AU - Kikegawa, Takumi
PY - 2005
Y1 - 2005
N2 - We have carried out in-situ X-ray diffraction experiments on high-pressure transformations of a Ca- and Fe- rich pyroxene (Ca1.03Mg0.61Fe0.23Al0.14Si 2O6) to investigate the stability of Ca 0.5(Mg, Fe, Al)0.5SiO3 perovskite (CM-perovskite) in a multi component system at about 32 GPa and up to 1900 °C. We observed that cubic CM-perovskite was formed at about 1300 °C and decomposed into cubic Ca-perovskites and orthorhombic Mg-perovskites and stishovite at 1800 °C when using a glass starting material. In another experiment using a crystalline pyroxene starting material, two cubic perovskites; Ca-perovskite and CM-perovskite, and orthorhombic Mg-perovskite formed simultaneously during the initial stage of the transformation. However, the cubic CM-perovskite subsequently decomposed into Mg- and Ca-perovskites and stishovite at 1200 °C. These results indicate that the assembly of cubic Ca-perovskite, orthorhombic Mg-perovskite and stishovite is stable and cubic CM-perovskite is a metastable phase at around 32 GPa and temperatures over 1000 °C in this system. Chemical analyses of product phases showed that Mg, Fe, and Al were preferentially partitioned into Mg-perovskite and the compositions of Ca-perovskite were close to pure CaSiO3. The present study shows that CM-perovskite nucleates during the initial stage of Ca(Mg, Fe, Al)Si 2O6 pyroxene transformation. Therefore, cold subducting slabs and impacted meteorites are the possible places in which CM-perovskite could exist. The Ca-rich glassy phase in a shocked chondrite (Tomioka and Kimura 2003) might have formed by vitrification of a metastable CM-perovskite-like phase.
AB - We have carried out in-situ X-ray diffraction experiments on high-pressure transformations of a Ca- and Fe- rich pyroxene (Ca1.03Mg0.61Fe0.23Al0.14Si 2O6) to investigate the stability of Ca 0.5(Mg, Fe, Al)0.5SiO3 perovskite (CM-perovskite) in a multi component system at about 32 GPa and up to 1900 °C. We observed that cubic CM-perovskite was formed at about 1300 °C and decomposed into cubic Ca-perovskites and orthorhombic Mg-perovskites and stishovite at 1800 °C when using a glass starting material. In another experiment using a crystalline pyroxene starting material, two cubic perovskites; Ca-perovskite and CM-perovskite, and orthorhombic Mg-perovskite formed simultaneously during the initial stage of the transformation. However, the cubic CM-perovskite subsequently decomposed into Mg- and Ca-perovskites and stishovite at 1200 °C. These results indicate that the assembly of cubic Ca-perovskite, orthorhombic Mg-perovskite and stishovite is stable and cubic CM-perovskite is a metastable phase at around 32 GPa and temperatures over 1000 °C in this system. Chemical analyses of product phases showed that Mg, Fe, and Al were preferentially partitioned into Mg-perovskite and the compositions of Ca-perovskite were close to pure CaSiO3. The present study shows that CM-perovskite nucleates during the initial stage of Ca(Mg, Fe, Al)Si 2O6 pyroxene transformation. Therefore, cold subducting slabs and impacted meteorites are the possible places in which CM-perovskite could exist. The Ca-rich glassy phase in a shocked chondrite (Tomioka and Kimura 2003) might have formed by vitrification of a metastable CM-perovskite-like phase.
UR - http://www.scopus.com/inward/record.url?scp=14944358661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14944358661&partnerID=8YFLogxK
U2 - 10.2138/am.2005.1649
DO - 10.2138/am.2005.1649
M3 - Article
AN - SCOPUS:14944358661
SN - 0003-004X
VL - 90
SP - 457
EP - 462
JO - American Mineralogist
JF - American Mineralogist
IS - 2-3
ER -