TY - JOUR
T1 - From the first stars to the first black holes
AU - Valiante, Rosa
AU - Schneider, Raffaella
AU - Volonteri, Marta
AU - Omukai, Kazuyuki
N1 - Publisher Copyright:
© 2016 The Authors.
PY - 2016/4/11
Y1 - 2016/4/11
N2 - The growth of the first supermassive black holes (SMBHs) at z> 6 is still a major challenge for theoretical models. If it starts from black hole (BH) remnants of Population III stars (light seeds with mass ~100 M⊙), it requires super-Eddington accretion. An alternative route is to start from heavy seeds formed by the direct collapse of gas on to an ~105 M⊙ BH. Here we investigate the relative role of light and heavy seeds as BH progenitors of the first SMBHs. We use the cosmological, data constrained semi-analytic model GAMETE/QSODUST to simulate several independentmerger histories of z>6 quasars.Using physicallymotivated prescriptions to form light and heavy seeds in the progenitor galaxies, we ?nd that the formation of a few heavy seeds (between 3 and 30 in our reference model) enables the Eddington-limited growth of SMBHs at z> 6. This conclusion depends sensitively on the interplay between chemical, radiative and mechanical feedback effects, which easily erase the conditions that allow the suppression of gas cooling in the low-metallicity gas (Z <Zcr and JLW >t; Jcr). We find that heavy seeds cannot form if dust cooling triggers gas fragmentation above a critical dust-to-gas mass ratio (D = Dcr). In addition, the relative importance of light and heavy seeds depends on the adopted mass range for light seeds, as this dramatically affects the history of cold gas along the merger tree, by both SN- and AGN-driven winds.
AB - The growth of the first supermassive black holes (SMBHs) at z> 6 is still a major challenge for theoretical models. If it starts from black hole (BH) remnants of Population III stars (light seeds with mass ~100 M⊙), it requires super-Eddington accretion. An alternative route is to start from heavy seeds formed by the direct collapse of gas on to an ~105 M⊙ BH. Here we investigate the relative role of light and heavy seeds as BH progenitors of the first SMBHs. We use the cosmological, data constrained semi-analytic model GAMETE/QSODUST to simulate several independentmerger histories of z>6 quasars.Using physicallymotivated prescriptions to form light and heavy seeds in the progenitor galaxies, we ?nd that the formation of a few heavy seeds (between 3 and 30 in our reference model) enables the Eddington-limited growth of SMBHs at z> 6. This conclusion depends sensitively on the interplay between chemical, radiative and mechanical feedback effects, which easily erase the conditions that allow the suppression of gas cooling in the low-metallicity gas (Z <Zcr and JLW >t; Jcr). We find that heavy seeds cannot form if dust cooling triggers gas fragmentation above a critical dust-to-gas mass ratio (D = Dcr). In addition, the relative importance of light and heavy seeds depends on the adopted mass range for light seeds, as this dramatically affects the history of cold gas along the merger tree, by both SN- and AGN-driven winds.
KW - Black hole physics - galaxies
KW - Evolution - galaxies
KW - High-redshift - galaxies
KW - ISM- quasars
KW - general
UR - http://www.scopus.com/inward/record.url?scp=84976863972&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84976863972&partnerID=8YFLogxK
U2 - 10.1093/mnras/stw225
DO - 10.1093/mnras/stw225
M3 - Article
AN - SCOPUS:84976863972
SN - 0035-8711
VL - 457
SP - 3356
EP - 3371
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
M1 - stw127
ER -