TY - JOUR
T1 - Fundamental study on creation of stimulus patterns with artificial neural network for functional electrical stimulation
AU - Murakami, Hajime
AU - Machino, Tamotsu
AU - Watanabe, Takashi
AU - Futami, Ryoko
AU - Hoshimiya, Nozomu
AU - Handa, Yasunobu
PY - 1997
Y1 - 1997
N2 - Functional Electrical Stimulation (FES) is very useful to restore motor functions of paralyzed extremities. It has been already reported that coordinated movements of the paralyzed upper limb of the quadriplegic patients could be restored by FES with electromyogram (EMG) -based stimulus patterns. The stimulus patterns based on EMG analysis reflect the cooperative activation of muscles. However it is necessary to measure EMG signals from many normal subjects every time when we try to restore a new movement. Hence we have studied a creating method of stimulus patterns for various movements. Stimulus patterns were created with the inverse model of the controlled object, i.e., the musculoskeletal system of the subject. Here we made Artificial Neural Network (ANN) learn the inverse model by the direct inverse modeling. Especially in this paper, the controlled object which has redundancy in an angle-stimulus voltage characteristic was considered. The direct inverse modeling method is not applicable to such redundant object. We introduced a constraint to obtain the angle-stimulus voltage characteristic which is not redundant. We controlled normal subject's wrist angles (angle of radial/ulnar flexion and palmar/dorsi flexion) with stimulus patterns created by this method. First, we measured stimulus voltage-angle characteristic of the controlled object, and obtained a forward model by making ANN learn the measured characteristic. Since the stimulus voltage-angle characteristic was many-to-one relationship, we decided one-to-one stimulus voltage-angle characteristic by using constraint. As the constraint, we minimized sum of normalized stimulus voltages to the muscles. It was expected that the muscle fatigue was suppressed by this constraint. Next, we made ANN learn the inverse model of one-to-one stimulus voltage-angle characteristic by the direct inverse modeling. Then we created stimulus patterns for four trajectories with the obtained inverse model (angle-stimulus voltage characteristic). The created stimulus patterns were applied to the muscles for wrist movements, and were confirmed to restore the desired movements. The results indicate the fundamental validity of the method.
AB - Functional Electrical Stimulation (FES) is very useful to restore motor functions of paralyzed extremities. It has been already reported that coordinated movements of the paralyzed upper limb of the quadriplegic patients could be restored by FES with electromyogram (EMG) -based stimulus patterns. The stimulus patterns based on EMG analysis reflect the cooperative activation of muscles. However it is necessary to measure EMG signals from many normal subjects every time when we try to restore a new movement. Hence we have studied a creating method of stimulus patterns for various movements. Stimulus patterns were created with the inverse model of the controlled object, i.e., the musculoskeletal system of the subject. Here we made Artificial Neural Network (ANN) learn the inverse model by the direct inverse modeling. Especially in this paper, the controlled object which has redundancy in an angle-stimulus voltage characteristic was considered. The direct inverse modeling method is not applicable to such redundant object. We introduced a constraint to obtain the angle-stimulus voltage characteristic which is not redundant. We controlled normal subject's wrist angles (angle of radial/ulnar flexion and palmar/dorsi flexion) with stimulus patterns created by this method. First, we measured stimulus voltage-angle characteristic of the controlled object, and obtained a forward model by making ANN learn the measured characteristic. Since the stimulus voltage-angle characteristic was many-to-one relationship, we decided one-to-one stimulus voltage-angle characteristic by using constraint. As the constraint, we minimized sum of normalized stimulus voltages to the muscles. It was expected that the muscle fatigue was suppressed by this constraint. Next, we made ANN learn the inverse model of one-to-one stimulus voltage-angle characteristic by the direct inverse modeling. Then we created stimulus patterns for four trajectories with the obtained inverse model (angle-stimulus voltage characteristic). The created stimulus patterns were applied to the muscles for wrist movements, and were confirmed to restore the desired movements. The results indicate the fundamental validity of the method.
UR - http://www.scopus.com/inward/record.url?scp=0031447032&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031447032&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0031447032
SN - 0021-3292
VL - 35
SP - 407
EP - 413
JO - Japanese Journal of Medical Electronics and Biological Engineering
JF - Japanese Journal of Medical Electronics and Biological Engineering
IS - 4
ER -