TY - GEN
T1 - Generalization of complexity oscillations in infinite sequences
AU - Liu, Chen Guang
AU - Yamazaki, Takeshi
AU - Tanaka, Kazuyuki
PY - 2008
Y1 - 2008
N2 - The C-oscillation due to Martin-Löf shows that {α|∀n[C(a up harpoon right n) ≥ n -O(1)]} = φ, which also follows {α|∀n[K(α up harpoon right n) ≥n + K(n) - O(1)]} = φ. By generalizing them, we show that there does not exist a real a such that ∀n (K (α up harpoon right n) ≥ n + λK(n) - O(1))for any λ > 0.
AB - The C-oscillation due to Martin-Löf shows that {α|∀n[C(a up harpoon right n) ≥ n -O(1)]} = φ, which also follows {α|∀n[K(α up harpoon right n) ≥n + K(n) - O(1)]} = φ. By generalizing them, we show that there does not exist a real a such that ∀n (K (α up harpoon right n) ≥ n + λK(n) - O(1))for any λ > 0.
UR - http://www.scopus.com/inward/record.url?scp=57649221687&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57649221687&partnerID=8YFLogxK
U2 - 10.1109/ICNC.2008.915
DO - 10.1109/ICNC.2008.915
M3 - Conference contribution
AN - SCOPUS:57649221687
SN - 9780769533049
T3 - Proceedings - 4th International Conference on Natural Computation, ICNC 2008
SP - 299
EP - 303
BT - Proceedings - 4th International Conference on Natural Computation, ICNC 2008
T2 - 4th International Conference on Natural Computation, ICNC 2008
Y2 - 18 October 2008 through 20 October 2008
ER -