TY - JOUR
T1 - Generation of self-clusters of galectin-1 in the farnesyl-bound form
AU - Yamaguchi, Kazumi
AU - Niwa, Yusuke
AU - Nakabayashi, Takakazu
AU - Hiramatsu, Hirotsugu
N1 - Publisher Copyright:
© The Author(s) 2016.
PY - 2016/9/14
Y1 - 2016/9/14
N2 - Ras protein is involved in a signal transduction cascade in cell growth, and cluster formation of H-Ras and human galectin-1 (Gal-1) complex is considered to be crucial to achieve its physiological roles. It is considered that the complex is formed through interactions between Gal-1 and the farnesyl group (farnesyl-dependent model), post-translationally modified to the C-terminal Cys, of H-Ras. We investigated the role of farnesyl-bound Gal-1 in the cluster formation by analyzing the structure and properties of Gal-1 bound to farnesyl thiosalicylic acid (FTS), a competitive inhibitor of the binding of H-Ras to Gal-1. Gal-1 exhibited self-cluster formation upon interaction with FTS, and small- and large-size clusters were formed depending on FTS concentration. The galactoside-binding pocket of Gal-1 in the FTS-bound form was found to play an important role in small-size cluster formation. Large-size clusters were likely formed by the interaction among the hydrophobic sites of Gal-1 in the FTS-bound form. The present results indicate that Gal-1 in the FTS-bound form has the ability to form self-clusters as well as intrinsic lectin activity. Relevance of the self-clustering of FTS-bound Gal-1 to the cluster formation of the H-Ras-Gal-1complex was discussed by taking account of the farnesyl-dependent model and another (Raf-dependent) model.
AB - Ras protein is involved in a signal transduction cascade in cell growth, and cluster formation of H-Ras and human galectin-1 (Gal-1) complex is considered to be crucial to achieve its physiological roles. It is considered that the complex is formed through interactions between Gal-1 and the farnesyl group (farnesyl-dependent model), post-translationally modified to the C-terminal Cys, of H-Ras. We investigated the role of farnesyl-bound Gal-1 in the cluster formation by analyzing the structure and properties of Gal-1 bound to farnesyl thiosalicylic acid (FTS), a competitive inhibitor of the binding of H-Ras to Gal-1. Gal-1 exhibited self-cluster formation upon interaction with FTS, and small- and large-size clusters were formed depending on FTS concentration. The galactoside-binding pocket of Gal-1 in the FTS-bound form was found to play an important role in small-size cluster formation. Large-size clusters were likely formed by the interaction among the hydrophobic sites of Gal-1 in the FTS-bound form. The present results indicate that Gal-1 in the FTS-bound form has the ability to form self-clusters as well as intrinsic lectin activity. Relevance of the self-clustering of FTS-bound Gal-1 to the cluster formation of the H-Ras-Gal-1complex was discussed by taking account of the farnesyl-dependent model and another (Raf-dependent) model.
UR - http://www.scopus.com/inward/record.url?scp=84987705065&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84987705065&partnerID=8YFLogxK
U2 - 10.1038/srep32999
DO - 10.1038/srep32999
M3 - Article
C2 - 27624845
AN - SCOPUS:84987705065
SN - 2045-2322
VL - 6
JO - Scientific Reports
JF - Scientific Reports
M1 - 32999
ER -