Genetic dissection of nodal function in patterning the mouse embryo

L. A. Lowe, S. Yamada, M. R. Kuehn

Research output: Contribution to journalArticlepeer-review

199 Citations (Scopus)

Abstract

Loss-of-function analysis has shown that the transforming growth factor-like signaling molecule nodal is essential for mouse mesoderm development. However, definitive proof of nodal function in other developmental processes in the mouse embryo has been lacking because the null mutation blocks gastrulation. We describe the generation and analysis of a hypomorphic nodal allele. Mouse embryos heterozygous for the hypomorphic allele and a null allele undergo gastrulation but then display abnormalities that fall into three distinct mutant phenotypic classes, which may result from expression levels falling below critical thresholds in one or more domains of nodal expression. Our analysis of each of these classes provides conclusive evidence for nodal-mediated regulation of several developmental-processes in the mouse embryo, beyond its role in mesoderm formation. We find that nodal signaling is required for correct positioning of the anteroposterior axis, normal anterior and midline patterning, and the left-right asymmetric development of the heart, vasculature, lungs and stomach.

Original languageEnglish
Pages (from-to)1831-1843
Number of pages13
JournalDevelopment
Volume128
Issue number10
Publication statusPublished - 2001
Externally publishedYes

Keywords

  • Anteroposterior axis
  • Lateral plate mesoderm
  • Left-right asymmetry
  • Mouse
  • Nodal
  • Node

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Genetic dissection of nodal function in patterning the mouse embryo'. Together they form a unique fingerprint.

Cite this