Abstract
This paper describes a global, daily sea surface temperature (SST) analysis based on satellite microwave and infrared measurements. The SST analysis includes a diurnal correction method to estimate foundation SST (SST free from diurnal variability) using satellite sea surface wind and solar radiation data, frequency splitting to reproduce intra-seasonal variability and a quality control procedure repeated twice to avoid operation errors. An optimal interpolation method designed for foundation SST is applied to blend the microwave and infrared satellite measurements. Although in situ SST measurements are not used for bias correction adjustments in the analysis, the output product, with a spatial grid size of 0.1°, has an accuracy of 0.48 °C and 0.46 °C compared to the in situ foundation SST measurements derived by drifting buoys and Argo floats, respectively. The same quality against the two types of in situ foundation SST (drifters and Argo) suggests that the two definitions of foundation SST proposed by past studies can provide same-quality information about the sea surface state underlying the diurnal thermocline.
Original language | English |
---|---|
Article number | 962 |
Journal | Remote Sensing |
Volume | 8 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2016 Nov |
Keywords
- Diurnal sea surface temperature correction
- Foundation sea surface temperature
- Optimal interpolation
- Quality control
- Sea surface temperature