TY - GEN
T1 - Grain boundary structure and properties in oxide bicrystals
AU - Yoshida, Hidehiro
AU - Shibata, Naoya
AU - Ikuhara, Yuichi
PY - 2005/12/1
Y1 - 2005/12/1
N2 - Misorientation dependence of grain boundary energy and grain boundary sliding at high temperature were examined in cubic zirconia bicrystals with [110] symmetric tilt boundaries, which were fabricated by diffusion bonding method from two cubic zirconia single crystals. High-resolution transmission electron microscopy observation revealed that the grain boundary in cubic zirconia bicrystals was clean and atomically sharp without any void or grain boundary amorphous layer. Grain boundary energy of the tilt boundaries was estimated from the dihedral angles on thermal grooved surface measured with atomic force microscope techniques. The misorientation dependence of the grain boundary energy in cubic zirconia bicrystals shows similar tendency to that of f.c.c. metal such as aluminum and copper. Grain boundary sliding associated with intragranular dislocation slip in cubic zirconia bicrystals was observed for all specimens. The observed grain boundary sliding and migration can be explained based on a dislocation mechanism for sliding which is based on the movement of lattice dislocations along the grain boundary by a combination of climb and glide.
AB - Misorientation dependence of grain boundary energy and grain boundary sliding at high temperature were examined in cubic zirconia bicrystals with [110] symmetric tilt boundaries, which were fabricated by diffusion bonding method from two cubic zirconia single crystals. High-resolution transmission electron microscopy observation revealed that the grain boundary in cubic zirconia bicrystals was clean and atomically sharp without any void or grain boundary amorphous layer. Grain boundary energy of the tilt boundaries was estimated from the dihedral angles on thermal grooved surface measured with atomic force microscope techniques. The misorientation dependence of the grain boundary energy in cubic zirconia bicrystals shows similar tendency to that of f.c.c. metal such as aluminum and copper. Grain boundary sliding associated with intragranular dislocation slip in cubic zirconia bicrystals was observed for all specimens. The observed grain boundary sliding and migration can be explained based on a dislocation mechanism for sliding which is based on the movement of lattice dislocations along the grain boundary by a combination of climb and glide.
KW - Bicrystals
KW - Cubic zirconia
KW - Grain boudnary sliding
KW - Grain boundary energy
UR - http://www.scopus.com/inward/record.url?scp=33845539117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845539117&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33845539117
SN - 0873396456
SN - 9780873396455
T3 - Materials Science and Technology
SP - 3
EP - 10
BT - Materials Science and Technology 2005 - Proceedings of the Conference
T2 - Materials Science and Technology 2005 Conference
Y2 - 25 September 2005 through 28 September 2005
ER -