Ground state analysis of magnetic nanographene molecules with modified edge

Narjes Gorjizadeh, Norio Ota, Yoshiyuki Kawazoe

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We study spin states of edge modified nanographene molecules with rectangular and triangular shapes by first principle calculations using density functional theory (DFT) and Hartree-Fock (HF) methods with Møller-Plesset (MP) correlation energy correction at different levels. Anthracene (C 14H10) and phenalenyl (C13H9), which contain three benzene rings combined in two different ways, can be considered as fragments of a graphene sheet. Carbon-based ferromagnetic materials are of great interest both in fundamental science and technological potential in organic spintronics devices. We show that non-magnetic rectangular molecules such as C14H10 can become ferromagnetic with high-spin state as the ground state by dihydrogenization of one of the zigzag edges, while triangular molecules such as C13H9 become ferromagnetic with high-spin state by dehydrogenization of one of the zigzag edges.

Original languageEnglish
Pages (from-to)64-68
Number of pages5
JournalChemical Physics
Volume415
DOIs
Publication statusPublished - 2013 Mar 29

Keywords

  • First-principle calculations
  • Graphene
  • Molecular magnetism

Fingerprint

Dive into the research topics of 'Ground state analysis of magnetic nanographene molecules with modified edge'. Together they form a unique fingerprint.

Cite this