Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21

Toshihiro Banjo, Janin Grajcarek, Daisuke Yoshino, Hideto Osada, Kota Y. Miyasaka, Yasuyuki S. Kida, Yosuke Ueki, Kazuaki Nagayama, Koichi Kawakami, Takeo Matsumoto, Masaaki Sato, Toshihiko Ogura

Research output: Contribution to journalArticlepeer-review

73 Citations (Scopus)

Abstract

Heartbeat is required for normal development of the heart, and perturbation of intracardiac flow leads to morphological defects resembling congenital heart diseases. These observations implicate intracardiac haemodynamics in cardiogenesis, but the signalling cascades connecting physical forces, gene expression and morphogenesis are largely unknown. Here we use a zebrafish model to show that the microRNA, miR-21, is crucial for regulation of heart valve formation. Expression of miR-21 is rapidly switched on and off by blood flow. Vasoconstriction and increasing shear stress induce ectopic expression of miR-21 in the head vasculature and heart. Flow-dependent expression of mir-21 governs valvulogenesis by regulating the expression of the same targets as mouse/human miR-21 (sprouty, pdcd4, ptenb) and induces cell proliferation in the valve-forming endocardium at constrictions in the heart tube where shear stress is highest. We conclude that miR-21 is a central component of a flow-controlled mechanotransduction system in a physicogenetic regulatory loop.

Original languageEnglish
Article number1978
JournalNature communications
Volume4
DOIs
Publication statusPublished - 2013

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21'. Together they form a unique fingerprint.

Cite this