Hemichordate genomes and deuterostome origins

Oleg Simakov, Takeshi Kawashima, Ferdinand Marlétaz, Jerry Jenkins, Ryo Koyanagi, Therese Mitros, Kanako Hisata, Jessen Bredeson, Eiichi Shoguchi, Fuki Gyoja, Jia Xing Yue, Yi Chih Chen, Robert M. Freeman, Akane Sasaki, Tomoe Hikosaka-Katayama, Atsuko Sato, Manabu Fujie, Kenneth W. Baughman, Judith Levine, Paul GonzalezChristopher Cameron, Jens H. Fritzenwanker, Ariel M. Pani, Hiroki Goto, Miyuki Kanda, Nana Arakaki, Shinichi Yamasaki, Jiaxin Qu, Andrew Cree, Yan Ding, Huyen H. Dinh, Shannon Dugan, Michael Holder, Shalini N. Jhangiani, Christie L. Kovar, Sandra L. Lee, Lora R. Lewis, Donna Morton, Lynne V. Nazareth, Geoffrey Okwuonu, Jireh Santibanez, Rui Chen, Stephen Richards, Donna M. Muzny, Andrew Gillis, Leonid Peshkin, Michael Wu, Tom Humphreys, Yi Hsien Su, Nicholas H. Putnam, Jeremy Schmutz, Asao Fujiyama, Jr Kai Yu, Kunifumi Tagawa, Kim C. Worley, Richard A. Gibbs, Marc W. Kirschner, Christopher J. Lowe, Noriyuki Satoh, Daniel S. Rokhsar, John Gerhart

Research output: Contribution to journalArticlepeer-review

156 Citations (Scopus)

Abstract

Acorn worms, also known as enteropneust (literally, gut-breathing) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal gill slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.

Original languageEnglish
Pages (from-to)459-465
Number of pages7
JournalNature
Volume527
Issue number7579
DOIs
Publication statusPublished - 2015 Nov 26

Fingerprint

Dive into the research topics of 'Hemichordate genomes and deuterostome origins'. Together they form a unique fingerprint.

Cite this