Hemodynamic and Flow Recirculation Effect on Rupture Prediction of Middle Cerebral Artery Aneurysm

Nadia Shaira Shafii, Ryuhei Yamaguchi, Ahmad Zahran Md Khudzari, Gaku Tanaka, Atsushi Saitoh, Makoto Ohta, Kahar Osman

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The mortality and morbidity rate due to the severe effect of intracranial aneurysm (IA) is increasing, which has driven research trend on aneurysm rupture risk. By understanding the nature and causes of the aneurysm rupture, preventive measures could be taken in avoiding rupture besides recommending proper treatments such as endovascular coiling. However, the presence of flow recirculation causes the aneurysm wall to degenerate and weakened. The weakened wall is due to the haemodynamic factors such as velocity, wall shear stress (WSS), time average WSS (TAWSS), OSI and RRT, which were analysed in this study. In the present study, the flow model simulated a human patient-specific aneurysm at the apex of the bifurcation in the middle cerebral artery (MCA) in the transient state. Experimental results of full-scale models were collected on a median, side plane to study the flow behaviour and validation to the numerical simulation settings, which resulted in good agreement with only 8% difference. The simulation results obtained showed several interesting findings. The jet flow into the aneurysm led to complex vortex formation due to impinging flow behaviour within the aneurysm dome. Additionally, the area that recorded low velocity was at 30% of low TAWSS with only 1% of OSI that was more than 0.3, while the OSI critical value and 0.27% area exceeded RRT threshold, which caused the large oscillating blood flow direction and activated the atherosclerosis progression. These results suggest that the jet flow into the dome may cause further damage to the wall of the MCA aneurysm, which will help in providing an insight towards completing a guidance system assessment of rupture risk for medical practitioners in future work.

Original languageEnglish
Pages (from-to)1-16
Number of pages16
JournalJournal of Advanced Research in Fluid Mechanics and Thermal Sciences
Issue number1
Publication statusPublished - 2020


  • Cerebral Aneurysm
  • Computational Fluid Dynamics
  • Flow Recirculation
  • Particle Image Velocimetry
  • Pulsatile Flow


Dive into the research topics of 'Hemodynamic and Flow Recirculation Effect on Rupture Prediction of Middle Cerebral Artery Aneurysm'. Together they form a unique fingerprint.

Cite this