High-Performance Dental Adhesives Containing an Ether-Based Monomer

S. Yamauchi, X. Wang, H. Egusa, J. Sun

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Dental adhesives are vital for the success of dental restorations. The objective of this study is to make strong and durable dental adhesives that are free from 2 symbolic methacrylate-based dental resins—2-bis[4-(2-hydroxy-3-methacryl-oxypropoxy)-phenyl]-propane (Bis-GMA) and 2-hydroxyethyl-methacrylate (HEMA)—and have equivalent/improved bonding strength and durability. We formulated, prepared, and evaluated 2 dental adhesives using mixtures of a hydrolytically stable ether-based monomer, triethylene glycol divinylbenzyl ether (TEG-DVBE), with urethane dimethacrylate (UDMA) or pyromellitic glycerol dimethacrylate. These adhesives were composed of equimolar ester-/ether-based vinyl functional groups. They were compared with Bis-GMA/HEMA-based commercial and experimental dental adhesives in terms of shear bond strength and microtensile bond strength (µTBS) to human dentin and the µTBS bond stability under extended thermocycling challenges. In addition, the resins’ infiltration to dentin tubules, mechanical performance, and chemical properties were assessed by scanning electron microscopy, ISO standard flexural strength and modulus measurements, contact angle measurements, and water sorption/solubility measurements. The hybrid TEG-DVBE-containing dental adhesives generated equivalent shear bond strength and µTBS in comparison with the controls. Significantly, these adhesives outperformed the controls after being challenged by 10,000 thermocycles between 5 °C and 55 °C. Water contact angle measurements suggested that the hybrid dental adhesives were relatively more hydrophobic than the Bis-GMA/HEMA controls. However, both TEG-DVBE-containing adhesives developed more and deeper resin tags in dentin tubules and formed thicker hybrid layers at the composite-dentin interface. Furthermore, the water solubility of UDMA/TEG-DVBE resins was reduced approximately 89% in comparison with the Bis-GMA/HEMA controls. The relatively hydrophobic adhesives that achieved equivalent/enhanced bonding performance suggest great potentials in developing dental restoration with extended service life. Furthermore, the TEG-DVBE-containing materials may find wider dental applications and broader utility in medical device development.

Original languageEnglish
Pages (from-to)189-195
Number of pages7
JournalJournal of Dental Research
Issue number2
Publication statusPublished - 2020 Feb 1


  • bonding agent
  • dental restoration
  • dentin infiltration
  • ether-based resin
  • medical device
  • tensile bond strength


Dive into the research topics of 'High-Performance Dental Adhesives Containing an Ether-Based Monomer'. Together they form a unique fingerprint.

Cite this