Abstract
High-energy, cw electron beams at new accelerator facilities allow electromagnetic production and precision study of hypernuclear structure, and we report here on the first experiment demonstrating the potential of the [Formula presented] reaction for hypernuclear spectroscopy. This experiment is also the first to take advantage of the enhanced virtual photon flux available when electrons are scattered at approximately zero degrees. The observed energy resolution was found to be [Formula presented] for the [Formula presented] spectrum, and is substantially better than any previous hypernuclear experiment using magnetic spectrometers. The positions of the major excitations are found to be in agreement with a theoretical prediction and with a previous binding energy measurement, but additional structure is also observed in the core excited region, underlining the future promise of this technique.
Original language | English |
---|---|
Pages (from-to) | 5 |
Number of pages | 1 |
Journal | Physical review letters |
Volume | 90 |
Issue number | 23 |
DOIs | |
Publication status | Published - 2003 |
ASJC Scopus subject areas
- Physics and Astronomy(all)