Abstract
This paper describes a magnetically actuated cantilever with dual spring (cantilevered actuator and torsional cantilever) for a high-speed imaging of atomic force microscopy (AFM). A fabricated cantilever beam with a high resonant frequency is successfully actuated by electromagnetic force. A planar coil is placed on the free end of the cantilever beam and embedded in a groove formed on the silicon cantilever to get a large deflection. Static and dynamic mechanical characteristics of the fabricated probes have been measured. The experimental results of the mechanical properties are compared with the calculation results obtained from a finite element method. When flowing a current of ±10 mA, a static deflection of ±2 can be achieved by a cantilever with a length of 400 μm. The scanning speed of AFM is increased up to 1 mm/s by actuating the high resonant frequency cantilever in constant force mode.
Original language | English |
---|---|
Pages (from-to) | 419-424 |
Number of pages | 6 |
Journal | Journal of Microelectromechanical Systems |
Volume | 9 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2000 Dec |