TY - GEN
T1 - Highly sensitive strain sensor using dumbbell-shape graphene nanoribbon
AU - Zhang, Qinqiang
AU - Suzuki, Ken
AU - Yang, Meng
AU - Miura, Hideo
N1 - Funding Information:
This research activity has been supported partially by Japanese special coordination funds for promoting science and technology, Japanese Grants-in-aid for Scientific Research, and Tohoku University. This research was supported partly by JSPS KAKENHI Grant Number JP16H06357.
Publisher Copyright:
Copyright © 2017 ASME
PY - 2017
Y1 - 2017
N2 - A nano-scale strip of graphene is known as graphene nano-ribbon (GNR). Previous studies have shown that the armchair-type GNR (aGNR) can open the electronic band gap at room temperature, and the band gap increases monotonically with the decrease in the width of aGNR. The critical width at which aGNR shows semi-conductive characteristics at room temperature is about 70 nm, when it is passivated by hydrogen on both sides. However, the electronic band structure varies frequently as a function of the number of carbon atoms along its width direction. In order to decrease the large variation of the band gap of aGNR to control the electronic properties of GNR for highly sensitive sensors and high performance devices, the electronic band structure of various dumbbell-shape structure of aGNR was analyzed by first-principles calculations based on the density functional theory using implemented in SIESTA package. It was shown that the width of aGNR had a large effect on the electronic band structure and the amplitude of the fluctuation of the band gap as a function of the number of carbon atoms decreased drastically. The electronic band structure of various GNRs under the application of uniaxial strain was also analyzed by using the first-principles calculations, in this study. It was confirmed that the effective band gap of aGNR thinner than 70 nm varies drastically under the application of uniaxial strain, and this result clearly indicates the possibility of a highly sensitive strain sensor using dumbbell-shape GNR structures.
AB - A nano-scale strip of graphene is known as graphene nano-ribbon (GNR). Previous studies have shown that the armchair-type GNR (aGNR) can open the electronic band gap at room temperature, and the band gap increases monotonically with the decrease in the width of aGNR. The critical width at which aGNR shows semi-conductive characteristics at room temperature is about 70 nm, when it is passivated by hydrogen on both sides. However, the electronic band structure varies frequently as a function of the number of carbon atoms along its width direction. In order to decrease the large variation of the band gap of aGNR to control the electronic properties of GNR for highly sensitive sensors and high performance devices, the electronic band structure of various dumbbell-shape structure of aGNR was analyzed by first-principles calculations based on the density functional theory using implemented in SIESTA package. It was shown that the width of aGNR had a large effect on the electronic band structure and the amplitude of the fluctuation of the band gap as a function of the number of carbon atoms decreased drastically. The electronic band structure of various GNRs under the application of uniaxial strain was also analyzed by using the first-principles calculations, in this study. It was confirmed that the effective band gap of aGNR thinner than 70 nm varies drastically under the application of uniaxial strain, and this result clearly indicates the possibility of a highly sensitive strain sensor using dumbbell-shape GNR structures.
UR - http://www.scopus.com/inward/record.url?scp=85041039262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85041039262&partnerID=8YFLogxK
U2 - 10.1115/IMECE201770318
DO - 10.1115/IMECE201770318
M3 - Conference contribution
AN - SCOPUS:85041039262
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Micro- and Nano-Systems Engineering and Packaging
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2017 International Mechanical Engineering Congress and Exposition, IMECE 2017
Y2 - 3 November 2017 through 9 November 2017
ER -