Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors

Shenghan Gao, Thibault Broux, Susumu Fujii, Cédric Tassel, Kentaro Yamamoto, Yao Xiao, Itaru Oikawa, Hitoshi Takamura, Hiroki Ubukata, Yuki Watanabe, Kotaro Fujii, Masatomo Yashima, Akihide Kuwabara, Yoshiharu Uchimoto, Hiroshi Kageyama

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)


Most solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s2) in oxides (e.g., SrVO2H, BaTi(O,H)3) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H) together with chalcogenide (Ch2–) anions to construct a family of antiperovskites with soft anionic sublattices. The M3HCh antiperovskites (M = Li, Na) adopt the ideal cubic structure except orthorhombic Na3HS, despite the large variation in sizes of M and Ch. This unconventional robustness of cubic phase mainly originates from the large size-flexibility of the H anion. Theoretical and experimental studies reveal low migration barriers for Li+/Na+ transport and high ionic conductivity, possibly promoted by a soft phonon mode associated with the rotational motion of HM6 octahedra in their cubic forms. Aliovalent substitution to create vacancies has further enhanced ionic conductivities of this series of antiperovskites, resulting in Na2.9H(Se0.9I0.1) achieving a high conductivity of ~1 × 10–4 S/cm (100 °C).

Original languageEnglish
Article number201
JournalNature Communications
Issue number1
Publication statusPublished - 2021 Dec 1


Dive into the research topics of 'Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors'. Together they form a unique fingerprint.

Cite this