Hydrogen storage mediated by Pd and Pt nanoparticles

Miho Yamauchi, Hirokazu Kobayashi, Hiroshi Kitagawa

Research output: Contribution to journalReview articlepeer-review

172 Citations (Scopus)


The hydrogen storage properties of metal nanoparticles change with particle size. For example, in a palladium-hydrogen system, the hydrogen solubility and equilibrium pressure for the formation of palladium hydride decrease with a decrease in the particle size, whereas hydrogen solubility in nanoparticles of platinum, in which hydrogen cannot be stored in the bulk state, increases. Systematic studies of hydrogen storage in Pd and Pt nanoparticles have clarified the origins of these nanosize effects. We found a novel hydrogen absorption site in the hetero-interface that forms between the Pd core and Pt shell of the Pd/Pt core/shell-type bimetallic nanoparticles. It is proposed that the potential formed in the hetero-interface stabilizes hydrogen atoms rather than interstitial in the Pd core and Pt shells. These results suggest that metal nanoparticles a few nanometers in size can act as a new type of hydrogen storage medium. Based on knowledge of the nanosize effects, we discuss how hydrogen storage media can be designed for improvement of the conditions of hydrogen storage.

Original languageEnglish
Pages (from-to)2566-2576
Number of pages11
Issue number15
Publication statusPublished - 2009 Oct 19


  • Core-shell materials
  • Hydrogen storage
  • Nanoparticles
  • Palladium
  • Platinum


Dive into the research topics of 'Hydrogen storage mediated by Pd and Pt nanoparticles'. Together they form a unique fingerprint.

Cite this