Ice premelting layer of ice-rubber friction studied using resonance shear measurement

Florian Lecadre, Motohiro Kasuya, Sylvain Hemette, Aya Harano, Yuji Kanno, Kazue Kurihara

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


We performed a resonance shear measurement (RSM) based on a low-temperature surface force apparatus to evaluate the frictional properties of the interface between butadiene rubber and ice at various temperatures below 0 °C. Friction between the rubber and ice was high and constant at temperatures below-5 °C, but sharply decreased when the temperature rose above-5 °C. We performed the same measurement by replacing the rubber with polystyrene and silica films which were rigid and exhibited practically minimal elastic deformation in comparison to the rubber. The friction decreased gradually with the increase in temperature from-20 °C to 0 °C at both the polystyrene-ice and the silica-ice interfaces. These results indicated that the elasticity of rubber was responsible for the differences in the rubber-ice interface and the other two samples. To understand the detailed mechanism of friction between the rubber and the ice, we analyzed the obtained RSM data using a physical model. The result indicated that the friction between ice and rubber was determined by the elastic deformation of the rubber film at temperatures below-5 °C, and by the viscosity of the ice premelting layer above-5 °C.

Original languageEnglish
Pages (from-to)8677-8682
Number of pages6
JournalSoft Matter
Issue number37
Publication statusPublished - 2020 Oct 7


Dive into the research topics of 'Ice premelting layer of ice-rubber friction studied using resonance shear measurement'. Together they form a unique fingerprint.

Cite this