ICIM: An inline network measurement mechanism for highspeed networks

Le Thanh Man Cao, Go Hasegawa, Masayuki Murata

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

In high-speed networks, such as 1-Gbps or higher networks, bandwidth measurement algorithms that utilize packet transmission/arrival intervals, such as packet trains and packet pairs, have a number of problems. First, network measurement for large bandwidth requires short packet transmission intervals, which causes a heavy load on the CPU. Second, network interface cards for high-speed networks usually employ Interrupt Coalescence (IC), which rearranges the arrival intervals of packets and causes bursty transmission of packets. In the present study, we introduce ICIM (Interrupt Coalescence -aware inline measurement), a new bandwidth measurement approach that overcomes these two problems. ICIM utilizes the data packets of an active TCP connection for the measurement. In order to determine the available bandwidth, rather than adjusting the packet transmission intervals, the TCP sender instead adjusts the number of packets involved in a burst and checks whether the inter-intervals of the bursts of corresponding ACK packets are increased or not. Simulation results show that ICIM can measure the bandwidth as high as some Gbps while requiring a number of data packets that is only 1/100 of that of the existing stream-based algorithm.

Original languageEnglish
Title of host publication4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, E2EMON
Pages66-73
Number of pages8
Publication statusPublished - 2006
Event4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, E2EMON - Vancouver, Canada
Duration: 2006 Apr 32006 Apr 3

Publication series

Name4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, E2EMON
Volume2006

Conference

Conference4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, E2EMON
Country/TerritoryCanada
CityVancouver
Period06/4/306/4/3

Fingerprint

Dive into the research topics of 'ICIM: An inline network measurement mechanism for highspeed networks'. Together they form a unique fingerprint.

Cite this