Identification and validation of FES physiological musculoskeletal model in paraplegic subjects

Mourad Benoussaad, Mitsuhiro Hayashibe, Charles Fattal, Philippe Poignet, David Guiraud

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

The knowledge and prediction of the behavior of electrically activated muscles are important requisites for the movement restoration by FES in spinal cord injured subjects. The whole parameter's identification of a physiological musculoskeletal model for FES is investigated in this work. The model represents the knee and its associated quadriceps muscle. The identification protocol is noninvasive and based on the in-vivo experiments on paraplegic subjects. The isometric and nonisometric data was obtained by stimulating the quadriceps muscles of 3 paraplegic subjects through surface electrodes. A cross validation has been carried out using nonisometric data set. The normalized RMS errors between the identified model and the measured knee response are presented for each subject.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages6538-6541
Number of pages4
ISBN (Print)9781424432967
DOIs
Publication statusPublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2009 Sept 22009 Sept 6

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period09/9/209/9/6

Fingerprint

Dive into the research topics of 'Identification and validation of FES physiological musculoskeletal model in paraplegic subjects'. Together they form a unique fingerprint.

Cite this