TY - JOUR
T1 - Identification of FMRP target mRNAs in the developmental brain
T2 - FMRP might coordinate Ras/MAPK, Wnt/β-catenin, and mTOR signaling during corticogenesis
AU - Casingal, Cristine R.
AU - Kikkawa, Takako
AU - Inada, Hitoshi
AU - Sasaki, Yukio
AU - Osumi, Noriko
N1 - Funding Information:
We thank Dr. Yutaka Suzuki, Dr. Yuta Kuze, Ms. Kiyomi Imamura (Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo), and Dr. Sumio Sugano (Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo) for sequencing using the NGS. We are grateful to Dr. Yoshio Wakamatsu (Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine) for sharing his cloning techniques and fruitful discussion, to Dr. Tatsuya Sato (Tohoku Fukushi University) for the electroporation technique and to Tomomi Tanaka (Yokohama City University) for Fmr1 KO mouse maintenance and some of brain sample preparation.
Funding Information:
This research was supported in part by the MEXT Grant-in-Aid for Scientific Research on Innovative Areas Grants #16H06530 and #221S0002 (to N.O), as well as the JSPS KAKENHI Grant #26291046 (to N.O).
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - Corticogenesis is one of the most critical and complicated processes during embryonic brain development. Any slight impairment in corticogenesis could cause neurodevelopmental disorders such as Fragile X syndrome (FXS), of which symptoms contain intellectual disability (ID) and autism spectrum disorder (ASD). Fragile X mental retardation protein (FMRP), an RNA-binding protein responsible for FXS, shows strong expression in neural stem/precursor cells (NPCs) during corticogenesis, although its function during brain development remains largely unknown. In this study, we attempted to identify the FMRP target mRNAs in the cortical primordium using RNA immunoprecipitation sequencing analysis in the mouse embryonic brain. We identified 865 candidate genes as targets of FMRP involving 126 and 118 genes overlapped with ID and ASD-associated genes, respectively. These overlapped genes were enriched with those related to chromatin/chromosome organization and histone modifications, suggesting the involvement of FMRP in epigenetic regulation. We further identified a common set of 17 FMRP “core” target genes involved in neurogenesis/FXS/ID/ASD, containing factors associated with Ras/mitogen-activated protein kinase, Wnt/β-catenin, and mammalian target of rapamycin (mTOR) pathways. We indeed showed overactivation of mTOR signaling via an increase in mTOR phosphorylation in the Fmr1 knockout (Fmr1 KO) neocortex. Our results provide further insight into the critical roles of FMRP in the developing brain, where dysfunction of FMRP may influence the regulation of its mRNA targets affecting signaling pathways and epigenetic modifications.
AB - Corticogenesis is one of the most critical and complicated processes during embryonic brain development. Any slight impairment in corticogenesis could cause neurodevelopmental disorders such as Fragile X syndrome (FXS), of which symptoms contain intellectual disability (ID) and autism spectrum disorder (ASD). Fragile X mental retardation protein (FMRP), an RNA-binding protein responsible for FXS, shows strong expression in neural stem/precursor cells (NPCs) during corticogenesis, although its function during brain development remains largely unknown. In this study, we attempted to identify the FMRP target mRNAs in the cortical primordium using RNA immunoprecipitation sequencing analysis in the mouse embryonic brain. We identified 865 candidate genes as targets of FMRP involving 126 and 118 genes overlapped with ID and ASD-associated genes, respectively. These overlapped genes were enriched with those related to chromatin/chromosome organization and histone modifications, suggesting the involvement of FMRP in epigenetic regulation. We further identified a common set of 17 FMRP “core” target genes involved in neurogenesis/FXS/ID/ASD, containing factors associated with Ras/mitogen-activated protein kinase, Wnt/β-catenin, and mammalian target of rapamycin (mTOR) pathways. We indeed showed overactivation of mTOR signaling via an increase in mTOR phosphorylation in the Fmr1 knockout (Fmr1 KO) neocortex. Our results provide further insight into the critical roles of FMRP in the developing brain, where dysfunction of FMRP may influence the regulation of its mRNA targets affecting signaling pathways and epigenetic modifications.
KW - Corticogenesis
KW - FMRP
KW - FXS
KW - mRNA targets
KW - RNA binding protein
UR - http://www.scopus.com/inward/record.url?scp=85097563976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097563976&partnerID=8YFLogxK
U2 - 10.1186/s13041-020-00706-1
DO - 10.1186/s13041-020-00706-1
M3 - Article
C2 - 33323119
AN - SCOPUS:85097563976
SN - 1756-6606
VL - 13
JO - Molecular Brain
JF - Molecular Brain
IS - 1
M1 - 167
ER -