Abstract
Background: The transcription factor Nrf2 and its negative regulator Keap1 play important roles in transcriptional induction of a set of detoxifying and anti-oxidant enzymes. To gain an insight into our present enigma as to how cells receive oxidative and electrophilic signals and transduce them to Nrf2, we have developed a zebrafish model system for molecular toxicological studies. Results: We systematically cloned zebrafish cytoprotective enzyme cDNAs and found their expression to be efficiently induced by electrophilic agents. We consequently identified the presence of Nrf2 and Keap1 in zebrafish. Both loss- and gain-of-function. analyses demonstrated that Nrf2 is the primary regulator of a subset of cytoprotective enzyme genes, while Keap1 suppresses Nrf2 activity in zebrafish. An ETGE motif, critical for the Nrf2-Keap1 interaction, was identified in the Neh2 domain of Nrf2 by reverse two-hybrid screening and found to be indispensable for the regulation of Nrf2 activity in zebrafish. Conclusion: Taken together, these results indicate that the Nrf2-Keap1 system is highly conserved among vertebrates and that the interface between Nrf2 and Keap1 forms an important molecular basis of this regulatory system.
Original language | English |
---|---|
Pages (from-to) | 807-820 |
Number of pages | 14 |
Journal | Genes to Cells |
Volume | 7 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2002 Aug |
Externally published | Yes |
ASJC Scopus subject areas
- Genetics
- Cell Biology