TY - JOUR
T1 - Important role of endothelium-derived hyperpolarizing factor in shear stress-induced endothelium-dependent relaxations in the rat mesenteric artery
AU - Takamura, Yoshiaki
AU - Shimokawa, Hiroaki
AU - Zhao, Huiying
AU - Igarashi, Hirohito
AU - Egashira, Kensuke
AU - Takeshita, Akira
PY - 1999/9/1
Y1 - 1999/9/1
N2 - Shear stress is one of the most important stimulators for the release of endothelium-derived relaxing factors. Although shear stress-induced release of nitric oxide (NO) has been extensively investigated, it remains to be elucidated whether endothelium-derived hyperpolarizing factor (EDHF) contributes to the endothelium-dependent relaxations to shear stress. This study was designed to address this point in the isolated rat mesenteric artery. Large mesenteric arteries (400500 μm)and resistance mesenteric arteries (150-250 μm) of the rat were precontracted with phenylephrine (at 80 mm Hg of perfusion pressure), and the changes in vessel diameter in response to variable flow (0-300 μl/min) were continuously examined. The relative contributions of vasodilator prostaglandins, NO, and EDHF were analyzed by the inhibitory effects of indomethacin (10-5 M), N(G)-nitro-L- arginine (L-NNA, 10-4 M), and KCl (40 mM), respectively. The shear stress- induced relaxations were totally endothelium dependent in both-sized blood vessels, and the contribution of NO was more prominent in large arteries than in resistance arteries, whereas that of EDHF was noted in both-sized blood vessels. Tetrabutylammonium (a nonselective inhibitor of K channels) almost abolished, whereas the combination of charybdotoxin (an inhibitor of both large- and intermediate-conductance Ca2+-activated K channels) and apamin (an inhibitor of small-conductance Ca2+-activated K channels) significantly inhibited the EDHF-mediated component of the shear stress-induced relaxations. These results indicate that EDHF plays an important role in shear stress-induced endothelium-dependent relaxations, where K channels, especially calcium-activated K channels, appear to be involved.
AB - Shear stress is one of the most important stimulators for the release of endothelium-derived relaxing factors. Although shear stress-induced release of nitric oxide (NO) has been extensively investigated, it remains to be elucidated whether endothelium-derived hyperpolarizing factor (EDHF) contributes to the endothelium-dependent relaxations to shear stress. This study was designed to address this point in the isolated rat mesenteric artery. Large mesenteric arteries (400500 μm)and resistance mesenteric arteries (150-250 μm) of the rat were precontracted with phenylephrine (at 80 mm Hg of perfusion pressure), and the changes in vessel diameter in response to variable flow (0-300 μl/min) were continuously examined. The relative contributions of vasodilator prostaglandins, NO, and EDHF were analyzed by the inhibitory effects of indomethacin (10-5 M), N(G)-nitro-L- arginine (L-NNA, 10-4 M), and KCl (40 mM), respectively. The shear stress- induced relaxations were totally endothelium dependent in both-sized blood vessels, and the contribution of NO was more prominent in large arteries than in resistance arteries, whereas that of EDHF was noted in both-sized blood vessels. Tetrabutylammonium (a nonselective inhibitor of K channels) almost abolished, whereas the combination of charybdotoxin (an inhibitor of both large- and intermediate-conductance Ca2+-activated K channels) and apamin (an inhibitor of small-conductance Ca2+-activated K channels) significantly inhibited the EDHF-mediated component of the shear stress-induced relaxations. These results indicate that EDHF plays an important role in shear stress-induced endothelium-dependent relaxations, where K channels, especially calcium-activated K channels, appear to be involved.
KW - EDHF
KW - Endothelium
KW - K channels
KW - NO
KW - Shear stress
UR - http://www.scopus.com/inward/record.url?scp=0032837637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032837637&partnerID=8YFLogxK
U2 - 10.1097/00005344-199909000-00010
DO - 10.1097/00005344-199909000-00010
M3 - Article
C2 - 10470996
AN - SCOPUS:0032837637
SN - 0160-2446
VL - 34
SP - 381
EP - 387
JO - Journal of Cardiovascular Pharmacology
JF - Journal of Cardiovascular Pharmacology
IS - 3
ER -