TY - GEN
T1 - Improving accuracy of geometric parameter estimation using projected score method
AU - Okatani, Takayuki
AU - Deguchi, Koichiro
PY - 2009
Y1 - 2009
N2 - A fundamental problem in computer vision (CV) is the estimation of geometric parameters from multiple observations obtained from images; examples of such problems range from ellipse fitting to multi-view structure from motion (SFM). The maximum likelihood (ML) method is widely used to estimate the parameters in such problems, assuming Gaussian noises to be present in the observations, for example, bundle adjustment for SFM. According to the theory of statistics, the ML estimates are nearly optimal for these problems, provided that the variance of the observation noises is sufficiently small. This implies that when noises are not small, more accurate estimates can be derived as compared to the ML estimates. In this study, we propose the application of a method called the projected score method, developed in statistics for computing higheraccuracy estimates, to the CV problems. We describe how it can be customized to solve the CV problems and propose a numerical algorithm to implement the method. We show that the method works effectively for such problems.
AB - A fundamental problem in computer vision (CV) is the estimation of geometric parameters from multiple observations obtained from images; examples of such problems range from ellipse fitting to multi-view structure from motion (SFM). The maximum likelihood (ML) method is widely used to estimate the parameters in such problems, assuming Gaussian noises to be present in the observations, for example, bundle adjustment for SFM. According to the theory of statistics, the ML estimates are nearly optimal for these problems, provided that the variance of the observation noises is sufficiently small. This implies that when noises are not small, more accurate estimates can be derived as compared to the ML estimates. In this study, we propose the application of a method called the projected score method, developed in statistics for computing higheraccuracy estimates, to the CV problems. We describe how it can be customized to solve the CV problems and propose a numerical algorithm to implement the method. We show that the method works effectively for such problems.
UR - http://www.scopus.com/inward/record.url?scp=77953189892&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953189892&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2009.5459388
DO - 10.1109/ICCV.2009.5459388
M3 - Conference contribution
AN - SCOPUS:77953189892
SN - 9781424444205
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 1733
EP - 1740
BT - 2009 IEEE 12th International Conference on Computer Vision, ICCV 2009
T2 - 12th International Conference on Computer Vision, ICCV 2009
Y2 - 29 September 2009 through 2 October 2009
ER -